Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Decision making via semi-supervised machine learning techniques

Protopapadakis Eftychios

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/889E8854-A8E6-44EE-9C09-2FA0198CB968-
Αναγνωριστικόhttps://doi.org/10.26233/heallink.tuc.65064-
Γλώσσαen-
Μέγεθος6 megabytesen
ΤίτλοςDecision making via semi-supervised machine learning techniquesen
ΔημιουργόςProtopapadakis Eftychiosen
ΔημιουργόςΠρωτοπαπαδακης Ευτυχιοςel
Συντελεστής [Επιβλέπων Καθηγητής]Matsatsinis Nikolaosen
Συντελεστής [Επιβλέπων Καθηγητής]Ματσατσινης Νικολαοςel
Συντελεστής [Συν-Επιβλέπων]Doulamis, Anastasiosen
Συντελεστής [Συν-Επιβλέπων]Michael Doumposen
Συντελεστής [Συν-Επιβλέπων]Δουμπος Μιχαληςel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Marinakis Ioannisen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Μαρινακης Ιωαννηςel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Stavroulakis Georgiosen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Σταυρουλακης Γεωργιοςel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Grammalidis, Nikosen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Tsafarakis Steliosen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Τσαφαρακης Στελιοςel
ΕκδότηςΠολυτεχνείο Κρήτηςel
ΕκδότηςTechnical University of Creteen
Ακαδημαϊκή ΜονάδαTechnical University of Crete::School of Production Engineering and Managementen
Ακαδημαϊκή ΜονάδαΠολυτεχνείο Κρήτης::Σχολή Μηχανικών Παραγωγής και Διοίκησηςel
ΠερίληψηΟ όρος μάθηση με μερική επίβλεψη αναφέρεται σε ένα ευρύ πεδίο τεχνικών μηχανικής μάθησης, οι οποίες χρησιμοποιούν τα μη τιτλοφορημένα δεδομένα για να εξάγουν επιπλέον ωφέλιμη πληροφορία. Η μερική επίβλεψη αντιμετωπίζει προβλήματα που σχετίζονται με την επεξεργασία και την αξιοποίηση μεγάλου όγκου δεδομένων και τα όποια κόστη σχετίζονται με αυτά (π.χ. χρόνος επεξεργασίας, ανθρώπινα λάθη). Απώτερος σκοπός είναι η ασφαλή εξαγωγή συμπερασμάτων, κανόνων ή προτάσεων. Τα μοντέλα λήψης απόφασης που χρησιμοποιούν τεχνικές μερικής μάθησης έχουν ποικίλα πλεονεκτήματα. Σε πρώτη φάση, χρειάζονται μικρό πλήθος τιτλοφορημένων δεδομένων για την αρχικοποίηση τους. Στη συνέχεια, τα νέα δεδομένα που θα εμφανιστούν αξιοποιούνται και τροποποιούν κατάλληλα το μοντέλο. Ως εκ τούτου, έχουμε ένα συνεχώς εξελισσόμενο μοντέλο λήψης αποφάσεων, με την ελάχιστη δυνατή προσπάθεια. Τεχνικές που προσαρμόζονται εύκολα και οικονομικά είναι οι κατεξοχήν κατάλληλες για τον έλεγχο συστημάτων, στα οποία παρατηρούνται συχνές αλλαγές στον τρόπο λειτουργίας. Ενδεικτικά πεδία εφαρμογής εφαρμογής ευέλικτων συστημάτων υποστήριξης λήψης αποφάσεων με μερική μάθηση είναι: η επίβλεψη γραμμών παραγωγής, η επιτήρηση θαλάσσιων συνόρων, η φροντίδα ηλικιωμένων, η εκτίμηση χρηματοπιστωτικού κινδύνου, ο έλεγχος για δομικές ατέλειες και η διαφύλαξη της πολιτιστικής κληρονομιάς.el
ΤύποςΔιδακτορική Διατριβήel
ΤύποςDoctoral Dissertationen
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by-sa/4.0/en
Ημερομηνία2016-06-22-
Ημερομηνία Δημοσίευσης2016-
Θεματική ΚατηγορίαΜερική επίβλεψηel
Θεματική ΚατηγορίαΣυστήματα υποστήριξης αποφάσεωνel
Θεματική ΚατηγορίαΜηχανική μάθησηel
Βιβλιογραφική ΑναφοράEftychios Protopapadakis, "Decision making via semi-supervised machine learning techniques", Doctoral Dissertation, School of Production Engineering and Management, Technical University of Crete, Chania, Greece, 2016en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά