Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Scaling out streaming time series analytics on Storm

Pavlakis Nikolaos

Simple record


URIhttp://purl.tuc.gr/dl/dias/802769EF-66BD-411D-9E6E-BA00A61F2B6F-
Identifierhttps://doi.org/10.26233/heallink.tuc.67653-
Languageen-
Extent74 pagesen
TitleScaling out streaming time series analytics on Stormen
TitleΚλιμάκωση αναλυτικής επεξεργασίας συνεχών χρονοσειρών χρησιμοποιώντας την πλατφόρμα Stormel
CreatorPavlakis Nikolaosen
CreatorΠαυλακης Νικολαοςel
Contributor [Thesis Supervisor]Garofalakis Minosen
Contributor [Thesis Supervisor]Γαροφαλακης Μινωςel
Contributor [Committee Member]Deligiannakis Antoniosen
Contributor [Committee Member]Δεληγιαννακης Αντωνιοςel
Contributor [Committee Member]Lagoudakis Michaelen
Contributor [Committee Member]Λαγουδακης Μιχαηλel
PublisherΠολυτεχνείο Κρήτηςel
PublisherTechnical University of Creteen
Academic UnitTechnical University of Crete::School of Electrical and Computer Engineeringen
Academic UnitΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστώνel
Content SummaryData can provide meaningful insights, if we are able to process it. We live in a time where the rate with which data is being generated grows exponentially, and extracting useful information from all this data, becomes harder and harder, thus mandating efficient and scalable data analytics solutions. Oftentimes, the input data to analytics applications is in the form of massive, continuous data streams. Consider the example of the global stock markets: An interesting piece of information for traders, portfolio managers, and so on, are the correlation/dependence patterns between different market players (e.g., equities, indexes, etc.); yet, such patterns typically change very rapidly over time, and the information is only valuable if it becomes available in real time (e.g., for algorithmic trading). This implies that stock market data needs to be processed in a streaming fashion, typically focusing only on a sliding window of recent readings (e.g., “monitor all correlations during the last hour”). In addition, data stream processing solutions need to be scalable as there are thousands of market players, implying millions of possible correlation/dependence pairs that need to be tracked in real time. This thesis introduces efficient algorithms and architectures for tackling the problem of monitoring the pair- wise dependence among thousands of data streams, and introduces a generic stream processing framework, T-Storm, which can be used in order to easily and efficiently develop, scale-out, and deploy large-scale stream analytics applications.en
Type of ItemΜεταπτυχιακή Διατριβήel
Type of ItemMaster Thesisen
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2017-03-27-
Date of Publication2017-
SubjectStreaming time series analytics en
SubjectBig dataen
Bibliographic CitationNikolaos Pavlakis, "Scaling out streaming time series analytics on Storm", Master Thesis, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2017en
Bibliographic CitationΝικόλαος Παυλάκης, "Κλιμάκωση αναλυτικής επεξεργασίας συνεχών χρονοσειρών χρησιμοποιώντας την πλατφόρμα Storm", Μεταπτυχιακή Διατριβή, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2017el

Available Files

Services

Statistics