Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Design and comparison of machine learning and computer vision methods in face recognition

Bantourakis Stylianos

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/DE78E45C-9A72-4A65-B3B1-E94EC7241690-
Αναγνωριστικόhttps://doi.org/10.26233/heallink.tuc.69053-
Γλώσσαen-
Μέγεθος76 pagesen
ΤίτλοςDesign and comparison of machine learning and computer vision methods in face recognitionen
ΔημιουργόςBantourakis Stylianosen
ΔημιουργόςΜπαντουρακης Στυλιανοςel
Συντελεστής [Επιβλέπων Καθηγητής]Zervakis Michalisen
Συντελεστής [Επιβλέπων Καθηγητής]Ζερβακης Μιχαληςel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Petrakis Evripidisen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Πετρακης Ευριπιδηςel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Bletsas Aggelosen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Μπλετσας Αγγελοςel
ΕκδότηςΠολυτεχνείο Κρήτηςel
ΕκδότηςTechnical University of Creteen
Ακαδημαϊκή ΜονάδαTechnical University of Crete::School of Electrical and Computer Engineeringen
Ακαδημαϊκή ΜονάδαΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστώνel
ΠερίληψηΤα τελευταία χρόνια, τα συστήματα αναγνώρισης προσώπου έχουν γίνει πιο δημοφιλή στο ευρύ κοινό λόγω της χρήσης τους σε smartphones και μέσα κοινωνικής δικτύωσης. Την ίδια στιγμή, ο τομέας της αναγνώρισης εικόνας ανθεί ακόμα περισσότερο λόγω της επαναφοράς των νευρωνικών δικτύων στο προσκήνιο, με τη μορφή των «βαθιών» νευρωνικών δικτύων (deep neural networks – deep learning). Έτσι, είναι επιτακτική η ανάγκη για τη μελέτη και κατανόηση των συνεπειών τους σε υποτομείς της αναγνώρισης εικόνας, όπως είναι η αναγνώριση προσώπου. Σε αυτή την εργασία, εξετάζουμε και τις κλασικές μεθόδους αλλά και το state-of-the-art, τo deep learning, για να αποκτήσουμε πλήρη και σφαιρική εικόνα της περιοχής. Πιο συγκεκριμένα, οι μέθοδοι Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) και Independent Component Analysis (ICA) εξετάστηκαν χρησιμοποιώντας όμως ως ένα επιπλέον στάδιο προ-επεξεργασίας τον Discrete Wavelet Transform (DWT). Αυτός ο προτεινόμενος συνδυασμός της αποσύνθεσης μέσω κυματιδίων για την εξαγωγή χαρακτηριστικών και της στατιστικής οργάνωσης για τη μείωση των χαρακτηριστικών αποδεικνύεται ως μια αποδοτική οδός στην αναγνώριση προσώπου. Ο DWT έχει ήδη ισχυρή παρουσία στον τομέα της ψηφιακής επεξεργασίας εικόνας, καθώς πάνω του βασίζεται το πρότυπο συμπίεσης JPEG, αλλά παράλληλα και στον τομέα της ασφάλειας μέσω των εφαρμογών της στεγανογραφίας. Όσον αφορά το deep learning, εξετάσαμε τη σύγχρονη προσέγγιση του transfer learning, δηλαδή της επαναχρησιμοποίησης ήδη εκπαιδευμένων σε πολύ μεγάλα datasets deep neural networks. Χρησιμοποιήσαμε ένα δίκτυο που έχει επιτύχει υψηλές αποδόσεις και εκπαιδευτεί σε ένα dataset διαφορετικό από το δικό μας και πήραμε υψηλά ποσοστά επιτυχίας, επιβεβαιώνοντας ότι τα deep neural networks είναι το μέλλον του τομέα. Επιπρόσθετα, προσπαθήσαμε μια εννοιολογική συσχέτιση μεταξύ των δύο μεθοδολογιών που εξετάσαμε, την κλασική μεθοδολογία βασισμένη πάνω σε σαφείς στατιστικές έννοιες και το deep learning όπου τα δομικά στοιχεία ενός δικτύου χρησιμοποιούνται ως «μαύρα κουτιά». Μέσω της μελέτης μας, μπορούμε να παρέχουμε στέρεες συσχετίσεις που επιτρέπουν την αιτιολόγηση της χρήσης των δομικών αυτών στοιχείων.el
ΤύποςΔιπλωματική Εργασίαel
ΤύποςDiploma Worken
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2017-08-24-
Ημερομηνία Δημοσίευσης2017-
Θεματική ΚατηγορίαFace recognitionen
Βιβλιογραφική ΑναφοράStylianos Bantourakis, "Design and comparison of machine learning and computer vision methods in face recognition", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2017en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά