Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Local ramp metering with distant downstream bottlenecks: a comparative study

Kan Yuheng , Wang Yibing, Papageorgiou Markos, Papamichail Ioannis

Simple record


URIhttp://purl.tuc.gr/dl/dias/3ED9D4F1-8242-4AE3-A879-8FD27CAE9E31-
Identifierhttps://doi.org/10.1016/j.trc.2015.08.016-
Languageen-
Extent22 pagesen
TitleLocal ramp metering with distant downstream bottlenecks: a comparative studyen
CreatorKan Yuheng en
CreatorWang Yibingen
CreatorPapageorgiou Markosen
CreatorΠαπαγεωργιου Μαρκοςel
CreatorPapamichail Ioannisen
CreatorΠαπαμιχαηλ Ιωαννηςel
PublisherElsevieren
DescriptionThe research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 321132, project TRAMAN21. en
Content SummaryThe well-known feedback ramp metering algorithm ALINEA can be applied for local ramp metering or included as a key component in a coordinated ramp metering system. ALINEA uses real-time occupancy measurements from the ramp flow merging area that may be at most a few hundred meters downstream of the metered on-ramp nose. In many practical cases, however, bottlenecks with smaller capacities than the merging area may exist further downstream, which suggests using measurements from those downstream bottlenecks. Recent theoretical and simulation studies indicate that ALINEA may lead to poorly damped closed-loop behavior in this case, but PI-ALINEA, a suitable Proportional-Integral (PI) extension of ALINEA, can lead to satisfactory control performance. This paper addresses the same local ramp-metering problem in the presence of far-downstream bottlenecks, with a particular focus on the employment of PI-ALINEA to tackle three distinct cases of bottleneck that may often be encountered in practice: (1) an uphill case; (2) a lane-drop case; and (3) an un-controlled downstream on-ramp case. Extensive simulation studies are conducted on the basis of a macroscopic traffic flow model to show that ALINEA is not capable of carrying out ramp metering in these bottleneck cases, while PI-ALINEA operates satisfactorily in all cases. A field application example of PI-ALINEA is also reported with regard to a real case of far downstream bottlenecks. With its control parameters appropriately tuned beforehand, PI-ALINEA is found to be universally applicable, with little fine-tuning required for field applications.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/en
Date of Item2017-11-13-
Date of Publication2016-
SubjectPI-ALINEAen
SubjectALINEAen
SubjectTime delayen
SubjectDistant downstream bottlenecksen
SubjectLocal ramp meteringen
Bibliographic CitationY. Kan, Y. Wang, M. Papageorgiou and I. Papamichail, "Local ramp metering with distant downstream bottlenecks: a comparative study," Transportation Research Part C, vol. 62, pp. 149-170, 2016. doi: 10.1016/j.trc.2015.08.016 en

Available Files

Services

Statistics