URI | http://purl.tuc.gr/dl/dias/3ACE2DCC-8DA9-4FBF-B876-5D01BCCB4BEB | - |
Αναγνωριστικό | https://www.tandfonline.com/doi/full/10.1080/00207179.2017.1362114?scroll=top&needAccess=true | - |
Αναγνωριστικό | https://doi.org/10.1080/00207179.2017.1362114 | - |
Γλώσσα | en | - |
Μέγεθος | 22 pages | en |
Τίτλος | Global exponential stabilisation of acyclic traffic networks | en |
Δημιουργός | Kontorinaki Maria | en |
Δημιουργός | Κοντορινακη Μαρια | el |
Δημιουργός | Karafyllis, Iasson | en |
Δημιουργός | Papageorgiou Markos | en |
Δημιουργός | Παπαγεωργιου Μαρκος | el |
Εκδότης | Taylor & Francis | en |
Περίληψη | This work is devoted to the construction of explicit feedback control laws for the robust global exponential stabilisation of general uncertain discrete-time acyclic networks. We consider discrete-time uncertain network models, which satisfy very weak assumptions. The construction of the controllers and the rigorous proof of the robust global exponential stability for the closed-loop system are based on recently proposed vector-Lyapunov function criteria, as well as the fact that the network is acyclic. It is shown, in this study, that the latter requirement is necessary for the existence of a robust global exponential stabiliser of the desired uncongested equilibrium point of the network. Our main focus is on traffic networks and all assumptions are related to features appearing in traffic models. An illustrative example demonstrates the applicability of the obtained results to realistic traffic flow networks. | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2018-04-23 | - |
Ημερομηνία Δημοσίευσης | 2017 | - |
Θεματική Κατηγορία | Acyclic networks | en |
Θεματική Κατηγορία | Discrete-time systems | en |
Θεματική Κατηγορία | Nonlinear systems | en |
Θεματική Κατηγορία | Traffic control | en |
Βιβλιογραφική Αναφορά | M. Kontorinaki, I. Karafyllis and M. Papageorgiou, "Global exponential stabilisation of acyclic traffic networks," Int. J. Control, pp. 1-21, Aug. 2017.
doi: 10.1080/00207179.2017.1362114 | en |