Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Algebraic random walks in the setting of symmetric functions

Jarvis, Peter, 1937-, Ellinas Dimosthenis

Simple record


URIhttp://purl.tuc.gr/dl/dias/C7CEC92D-9151-45D1-B92C-6ABCB419528C-
Identifierhttps://www.sciencedirect.com/science/article/pii/S0034487717300484?via%3Dihub-
Identifierhttps://doi.org/10.1016/S0034-4877(17)30048-4-
Languageen-
Extent20 pagesen
TitleAlgebraic random walks in the setting of symmetric functionsen
CreatorJarvis, Peter, 1937-en
CreatorEllinas Dimosthenisen
CreatorΕλληνας Δημοσθενηςel
PublisherElsevieren
Content SummaryUsing the standard formulation of algebraic random walks (ARWs) via coalgebras, we consider ARWs for co- and Hopf-algebraic structures in the ring of symmetric functions. These derive from different types of products by dualisation, giving the dual pairs of outer multiplication and outer coproduct, inner multiplication and inner coproduct, and symmetric function plethysm and plethystic coproduct. Adopting standard coordinates for a class of measures (and corresponding distribution functions) to guarantee positivity and correct normalisation, we show the effect of appropriate walker steps of the outer, inner and plethystic ARWs. If the coordinates are interpreted as heights or occupancies of walker(s) at different locations, these walks introduce translations, dilations (scalings) and inflations of the height coordinates, respectively. en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2018-05-11-
Date of Publication2017-
SubjectAlgebraic combinatoricsen
SubjectHopf algebrasen
SubjectPlethysmen
SubjectRandom walksen
Bibliographic CitationP. D. Jarvis and D. Ellinas, "Algebraic random walks in the setting of symmetric functions," Rep. Math. Phys., vol. 79, no. 3, pp. 347-366, Jun. 2017. doi: 10.1016/S0034-4877(17)30048-4en

Services

Statistics