Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Multigrid cell-centered techniques for high-order incompressible flow numerical solutions

Mathioudakis Emmanouil, Mandikas Vasileios, Kozyrakis Georgios, Kampanis, Nikolaos A, Ekaterinaris, John A

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/75F0BB2A-59FB-4165-A817-4E3294EC6EA5-
Αναγνωριστικόhttps://www.sciencedirect.com/science/article/pii/S127096381630846X?via%3Dihub-
Αναγνωριστικόhttps://doi.org/10.1016/j.ast.2017.01.015-
Γλώσσαen-
Μέγεθος17 pagesen
ΤίτλοςMultigrid cell-centered techniques for high-order incompressible flow numerical solutionsen
ΔημιουργόςMathioudakis Emmanouilen
ΔημιουργόςΜαθιουδακης Εμμανουηλel
ΔημιουργόςMandikas Vasileiosen
ΔημιουργόςΜανδικας Βασιλειοςel
ΔημιουργόςKozyrakis Georgiosen
ΔημιουργόςKampanis, Nikolaos Aen
ΔημιουργόςEkaterinaris, John Aen
ΕκδότηςElsevieren
ΠερίληψηA multigrid pressure correction scheme suitable for high order discretizations of the incompressible Navier–Stokes equations is developed and demonstrated. The pressure correction equation is discretized with fourth-order compact finite-difference approximations. Iterative methods based on multigrid techniques accelerate the most demanding part of the overall solution algorithm, which is the numerical solution of the arised large and sparse linear system. Geometrical multigrid methods, using partial semicoarsenig strategy and zebra line Gauss–Seidel relaxation, are employed to efficiently approximate the solution of the resulting algebraic linear system. Effects of various multigrid components on the pressure correction procedure are evaluated and new high-order transfer operators are developed for the case of cell-centered grids. Their convergence rates are also compared with commonly used intergrid transfer operators. Furthermore, numerically comparisons between different multigrid cycle approaches, such as V-, W- and F-cycle, are presented. The performance tests demonstrate that the new pressure correction approach significantly reduces the computational effort compared to single-grid algorithms. Furthermore, it is shown that the overall high order accuracy of the numerical method is retained in space and time with increasing Reynolds number.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2018-05-14-
Ημερομηνία Δημοσίευσης2017-
Θεματική ΚατηγορίαCell-centered multigriden
Θεματική ΚατηγορίαGlobal pressure correctionen
Θεματική ΚατηγορίαHigh-order compact schemesen
Θεματική ΚατηγορίαIncompressible Navier–Stokes equationsen
Θεματική ΚατηγορίαUnequal meshsizeen
Βιβλιογραφική ΑναφοράE. N. Mathioudakis, V. G. Mandikas, G. V. Kozyrakis, N. A. Kampanis and J. A. Ekaterinaris, "Multigrid cell-centered techniques for high-order incompressible flow numerical solutions," Aerosp. Sci. Technol., vol. 64, pp. 85-101, May 2017. doi: 10.1016/j.ast.2017.01.015en

Υπηρεσίες

Στατιστικά