Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Modelling of particle resuspension by a turbulent airflow and the role of particle size, surface roughness and electric charge

Chatoutsidou Sofia-Eirini, Drossinos, Ioannis, Tørseth, Kjetil 1966-, Lazaridis Michalis

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/B4952908-F545-45DF-BD3D-CC4581E51971
Έτος 2017
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά S. E. Chatoutsidou, Y. Drossinos, K. Tørseth and M. Lazaridis, "Modelling of particle resuspension by a turbulent airflow and the role of particle size, surface roughness and electric charge," J. Adhes. Sci. Technol., vol. 31, no. 8, pp. 817-843, April 2017. doi: 10.1080/01694243.2016.1232955 https://doi.org/10.1080/01694243.2016.1232955
Εμφανίζεται στις Συλλογές

Περίληψη

A resuspension model based on the Lennard–Jones intermolecular potential is applied to a monolayer deposit of spherical particles. The model considers the interactions between a particle and a surface under the influence of an external turbulent airflow. The particle–surface interaction was modelled with and without particle deformation due to elastic flattening. The resuspension rate was calculated by a kinetic force-balance approach whereby particle detachment occurs when the instantaneous joint contribution of the lift and drag forces exceeds the total adhesive force of the particle–surface system. Enhanced aerodynamic particle removal driven by the moment of the lift and drag forces was determined. Model predictions suggest that inclusion of the moment of the aerodynamic forces provides a suitable model for particle detachment (initiated by rolling). The importance of elastic deformation was found to depend on adhesive forces, characteristics of the substrate surface (surface roughness) and particle size. The model was applied to a number of laboratory experiments. For one set of experiments, we identified two resuspension regimes depending on whether small non-deformable or large deformable (equivalently, strongly or weakly bound) particles resuspended at high or low friction velocities. A modified model incorporating the effect of particle charge is also presented. Results indicate that particle resuspension is possible even when electrostatic forces are present, but the resuspension rate decreases considerably, depending on particle size, particle charge and surface roughness.

Υπηρεσίες

Στατιστικά