Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Data mining parameters' selection procedure applied to a multi-start local search algorithm for the permutation flow shop scheduling problem

Makrymanolakis Nikolaos, Marinaki Magdalini, Marinakis Ioannis

Simple record


URIhttp://purl.tuc.gr/dl/dias/AA3480B2-49F4-4B89-AA08-A9D6309D1E75-
Identifierhttps://ieeexplore.ieee.org/document/7850198/-
Identifierhttps://doi.org/10.1109/SSCI.2016.7850198-
Languageen-
TitleData mining parameters' selection procedure applied to a multi-start local search algorithm for the permutation flow shop scheduling problemen
CreatorMakrymanolakis Nikolaosen
CreatorΜακρυμανωλακης Νικολαοςel
CreatorMarinaki Magdalinien
CreatorΜαρινακη Μαγδαληνηel
CreatorMarinakis Ioannisen
CreatorΜαρινακης Ιωαννηςel
PublisherInstitute of Electrical and Electronics Engineersen
Content SummaryIn this paper, a new metaheuristic algorithm is developed, suitable for solving combinatorial optimization problems, such as the job shop scheduling problems, the travelling salesman problem, the vehicle routing problem, etc. This study focuses on permutation flow-shop scheduling problem. The proposed algorithm combines various techniques used in local search. As various elements of the proposed algorithm may be tuned, a systematic data mining procedure is followed and utilizes data from a number of executions in order to build models for the suitable parameterization for every problem size. The results, using the model suggested parameter combinations, are presented using benchmark instances for the permutation flow-shop scheduling problem from the literature. The results show that the followed parameter control procedure improved vastly the efficiency of the proposed algorithm. en
Type of ItemΠλήρης Δημοσίευση σε Συνέδριοel
Type of ItemConference Full Paperen
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2018-05-29-
Date of Publication2017-
SubjectCombinatorial optimizationen
SubjectData miningen
SubjectFlow-shop schedulingen
SubjectNEHen
SubjectParameter controlen
SubjectPath Relinkingen
SubjectThreshold acceptingen
Bibliographic CitationN. Makrymanolakis, M. Marinaki and Y. Marinakis, "Data mining parameters' selection procedure applied to a multi-start local search algorithm for the permutation flow shop scheduling problem," in 2016 IEEE Symposium Series on Computational Intelligence, 2017. doi: 10.1109/SSCI.2016.7850198en

Services

Statistics