Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

A petri net based methodology for modelling, analysis, demand forecast and optimal planning of batch production systems

Vrontakis Konstantinos, Kampianakis Andreas, Tsinarakis Georgios

Simple record


URIhttp://purl.tuc.gr/dl/dias/07DA68CE-C4A9-4B36-9849-C21A1C39F895-
Identifierhttps://ieeexplore.ieee.org/document/7844395/-
Identifierhttps://doi.org/10.1109/SMC.2016.7844395-
Languageen-
Extent6 pagesen
TitleA petri net based methodology for modelling, analysis, demand forecast and optimal planning of batch production systemsen
CreatorVrontakis Konstantinosen
CreatorΒροντακης Κωνσταντινοςel
CreatorKampianakis Andreasen
CreatorΚαμπιανακης Ανδρεαςel
CreatorTsinarakis Georgiosen
CreatorΤσιναρακης Γεωργιοςel
PublisherInstitute of Electrical and Electronics Engineersen
Content SummaryA methodology for optimal production planning of an industry, processing multiple raw material types, is presented. Petri net modeling of production procedures, combined with stochastic forecast of upcoming demand, produce necessary input for a Mixed Integer Linear Problem (MILP) that calculates optimal production timeline according to various constraints. The methodology is developed for batch production systems with resource sharing between different types of final products, and is applied to a real case study system. en
Type of ItemΠλήρης Δημοσίευση σε Συνέδριοel
Type of ItemConference Full Paperen
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2018-05-29-
Date of Publication2017-
SubjectPetri netsen
SubjectStochastic processesen
SubjectBatch production systemsen
SubjectDemand forecastingen
SubjectInteger programmingen
SubjectLinear programmingen
Bibliographic CitationK. E. Vrontakis, A. N. Kampianakis and G. J. Tsinarakis, "A petri net based methodology for modelling, analysis, demand forecast and optimal planning of batch production systems," in 2016 IEEE International Conference on Systems, Man, and Cybernetics, 2017, pp. 1136-1141. doi: 10.1109/SMC.2016.7844395en

Services

Statistics