Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Predicting the spatial distribution of the aquifer head using a radial basis function network

Tsaparas Vasileios

Simple record


URIhttp://purl.tuc.gr/dl/dias/75312124-7826-4F39-9B29-784AEF4254ED-
Languageel-
Languageen-
Extent72 σελίδεςel
TitleΠρόβλεψη της χωρικής κατανομής υδραυλικού ύψους υδροφορέα με τη χρήση νευρωνικού δικτύου ακτινικών συναρτήσεων βάσηςel
TitlePredicting the spatial distribution of the aquifer head using a radial basis function networken
CreatorTsaparas Vasileiosen
CreatorΤσαπαρας Βασιλειοςel
ContributorKaratzas Giorgosen
ContributorΚαρατζας Γιωργοςel
ContributorNikolos Ioannisen
ContributorΝικολος Ιωαννηςel
ContributorVarouchakis Emmanouilen
ContributorΒαρουχακης Εμμανουηλel
ContributorTheodoridou Panagiotaen
ContributorΘεοδωριδου Παναγιωταel
PublisherΠολυτεχνείο Κρήτηςel
PublisherTechnical University of Creteen
Academic UnitTechnical University of Crete::School of Environmental Engineeringen
Academic UnitΠολυτεχνείο Κρήτης::Σχολή Μηχανικών Περιβάλλοντοςel
Content SummaryΣκοπός αυτής της εργασίας είναι η χωρική εκτίμηση του υδραυλικού ύψους ενός υδροφορέα στον νομό Δράμας με την χρήση ενός είδους τεχνητού νευρωνικου δικτύου που λέγεται δίκτυο ακτινικών συναρτήσεων βάσης (RBFN–RadialBasisFunctionNetwork). Οι συμβατικές τεχνικές μοντελοποίησης συχνά είναι χρονοβόρες και δαπανηρές και έχουν περιορισμούς σε δεδομένα και γνώση. Τα τεχνητά νευρωνικά δίκτυα παρέχουν μια εναλλακτική απέναντι σε αυτά τα εμπόδια, καθώςμπορούν να παρέχουν λύσεις χωρίς να καθορίσουν τη σχέση μεταξύ των δεδομένων και των αποτελεσμάτων, με το να εκπαιδεύονται από δεδομένα και να γενικεύουν. Η λειτουργία τους βασίζεται στην βιολογία του ανθρώπινου εγκεφάλου και αποτελούν ένα είδος τεχνητής νοημοσύνης. Τα τεχνητά νευρωνικά δίκτυα εκπαιδεύονται τροποποιώντας τις ενδονευρωνικές δυνάμεις σύνδεσης γνωστές ωςσυναπτικά βάρη μεταξύ των τεχνητών τους νευρώνων. Αυτό γίνεται τροφοδοτώντας το δίκτυο με παραδείγματα εισόδου-εξόδου, ώστε να τους παρέχεται μια επιθυμητή απάντηση σε δεδομένα εισόδου και έτσι να τροποποιήσουν κατάλληλα τα συναπτικά τους βάρη, ανάλογα με έναν κανόνα μάθησης.Μετά από ένα μεγάλο αριθμό επαναλήψεων το τεχνητό νευρωνικό δίκτυο έχει κατασκευάσει μια χαρτογράφηση εισόδου- εξόδου και έχει προσαρμοστεί στο πρόβλημα. Στην περιοχή μελέτης έχουμε δεδομένα από 250σημεία από πηγάδια παρατήρησης. Για κάθε σημείο έχουμε συντεταγμένες χ, ψ και μετρήσεις υδραυλικού ύψους. Το νευρωνικό δίκτυο εκπαιδεύτηκε στην πλειοψηφία των δεδομένων και δοκιμάστηκε η ακρίβεια του σε έναν μικρό αριθμό του συνόλου δεδομένων.Πραγματοποιήθηκαν επίσης δοκιμές χωρίζοντας το σύνολο δεδομένων σε υποσύνολα και εκπαιδεύοντας το νευρωνικό δίκτυο σε αυτά, καθώς και δοκιμές σε τυχαία δεδομένα. Εξετάστηκε η ακρίβεια του νευρωνικού δικτύου σε κάθε περίπτωση και έγινε γραφική αναπαράσταση των αποτελεσμάτων και της απόκλισης από τις τιμές μέτρησης.el
Content SummaryThe purpose of this work is to estimate the hydraulic head of an aquifer in the regional unit of Drama using an artificial neural network called RBFN (Radial Basis Function Network). Conventional modeling techniques are often time-consuming and costly and have limitations in data and knowledge. Artificial neural networks provide an alternative to these obstacles, as they can provide solutions without defining the relationship between the data and the results, by being trained by data and generalizing. Their function is based on the biology of the human brain and is a form of artificial intelligence. Artificial neural networks are trained by modifying the interneuronconnection strengths, known as synaptic weights, between their artificial neurons. This is done by feeding the network with input-output examples, to give them a desired response to input data and, thus, to modify their synaptic weights according to a learning rule. After a large number of iterations, the artificial neural network has constructed an input-output mapping and has adapted to the problem. In the study area we have data from 250 points from observation wells. For each point we have coordinates x, y and hydraulic head measurements. The neural network was trained on the majority of data and its accuracy was tested on a small number of testing data. Tests were performed by dividing the data set into subsets and training the neural network with each of them, as well as testswith random data. The accuracy of the neural network was examined in each case and graphical representations of the results and deviations from the measurement values were made.en
Type of ItemΔιπλωματική Εργασίαel
Type of ItemDiploma Worken
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2018-07-10-
Date of Publication2018-
SubjectΥπόγεια ύδαταel
SubjectRBFNen
SubjectRadial basis function networksen
SubjectANNen
SubjectArtificial neural networksen
SubjectΑκτινικές συναρτήσεις βάσηςel
SubjectΝευρωνικά δίκτυαel
Bibliographic CitationΒασίλειος Τσαπάρας, "Πρόβλεψη της χωρικής κατανομής υδραυλικού ύψους υδροφορέα με τη χρήση νευρωνικού δικτύου ακτινικών συναρτήσεων βάσης", Διπλωματική Εργασία, Σχολή Μηχανικών Περιβάλλοντος, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2018el
Bibliographic CitationVasileios Tsaparas, "Predicting the spatial distribution of the aquifer head using a radial basis function network", Diploma Work, School of Environmental Engineering, Technical University of Crete, Chania, Greece, 2018en

Available Files

Services

Statistics