Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

A flexible and efficient algorithmic framework for constrained matrix and tensor factorization

Huang Kejun, Sidiropoulos, N. D, Liavas Athanasios

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/77044C87-425A-417E-84AA-59971B17339B-
Αναγνωριστικόhttps://ieeexplore.ieee.org/document/7484753/-
Αναγνωριστικόhttps://doi.org/10.1109/TSP.2016.2576427-
Γλώσσαen-
Μέγεθος14 pagesen
ΤίτλοςA flexible and efficient algorithmic framework for constrained matrix and tensor factorizationen
ΔημιουργόςHuang Kejunen
ΔημιουργόςSidiropoulos, N. Den
ΔημιουργόςLiavas Athanasiosen
ΔημιουργόςΛιαβας Αθανασιοςel
ΕκδότηςInstitute of Electrical and Electronics Engineersen
ΠερίληψηWe propose a general algorithmic framework for constrained matrix and tensor factorization, which is widely used in signal processing and machine learning. The new framework is a hybrid between alternating optimization (AO) and the alternating direction method of multipliers (ADMM): each matrix factor is updated in turn, using ADMM, hence the name AO-ADMM. This combination can naturally accommodate a great variety of constraints on the factor matrices, and almost all possible loss measures for the fitting. Computation caching and warm start strategies are used to ensure that each update is evaluated efficiently, while the outer AO framework exploits recent developments in block coordinate descent (BCD)-type methods which help ensure that every limit point is a stationary point, as well as faster and more robust convergence in practice. Three special cases are studied in detail: non-negative matrix/tensor factorization, constrained matrix/tensor completion, and dictionary learning. Extensive simulations and experiments with real data are used to showcase the effectiveness and broad applicability of the proposed framework.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2018-10-08-
Ημερομηνία Δημοσίευσης2016-
Θεματική ΚατηγορίαAlternating direction method of multipliersen
Θεματική ΚατηγορίαAlternating optimizationen
Θεματική ΚατηγορίαCanonical polyadic decompositionen
Θεματική ΚατηγορίαConstrained matrix/tensor factorizationen
Θεματική ΚατηγορίαDictionary learningen
Θεματική ΚατηγορίαMatrix/tensor completionen
Θεματική ΚατηγορίαNon-negative matrix/tensor factorizationen
Θεματική ΚατηγορίαPARAFACen
Βιβλιογραφική ΑναφοράK. Huang, N. D. Sidiropoulos and A. P. Liavas, "A flexible and efficient algorithmic framework for constrained matrix and tensor factorization," IEEE Trans. Signal Process., vol. 64, no. 19, pp. 5052-5065, Oct. 2016. doi: 10.1109/TSP.2016.2576427 en

Υπηρεσίες

Στατιστικά