URI | http://purl.tuc.gr/dl/dias/048A7D46-E414-4908-A638-C6583CD8EA11 | - |
Identifier | https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.032123 | - |
Identifier | https://doi.org/10.1103/PhysRevE.94.032123 | - |
Language | en | - |
Title | Semiclassical bifurcations and topological phase transitions in a one-dimensional lattice of coupled Lipkin-Meshkov-Glick models | en |
Creator | Sorokin A. V. | en |
Creator | Aparicio Alcalde M. | en |
Creator | Bastidas Victor Manuel | en |
Creator | Engelhardt Georg | en |
Creator | Aggelakis Dimitrios | en |
Creator | Αγγελακης Δημητριος | el |
Creator | Brandes Tobias Scott | en |
Publisher | American Physical Society | en |
Content Summary | In this work we study a one-dimensional lattice of Lipkin-Meshkov-Glick models with alternating couplings between nearest-neighbors sites, which resembles the Su-Schrieffer-Heeger model. Typical properties of the underlying models are present in our semiclassical-topological hybrid system, allowing us to investigate an interplay between semiclassical bifurcations at mean-field level and topological phases. Our results show that bifurcations of the energy landscape lead to diverse ordered quantum phases. Furthermore, the study of the quantum fluctuations around the mean-field solution reveals the existence of nontrivial topological phases. These are characterized by the emergence of localized states at the edges of a chain with free open-boundary conditions. | en |
Type of Item | Peer-Reviewed Journal Publication | en |
Type of Item | Δημοσίευση σε Περιοδικό με Κριτές | el |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2018-10-08 | - |
Date of Publication | 2016 | - |
Subject | Bifurcations | en |
Subject | Complex systems | en |
Subject | Phase transitions | en |
Bibliographic Citation | A. V. Sorokin, M. Aparicio Alcalde, V. M. Bastidas, G. Engelhardt, D. G. Angelakis and T. Brandes, "Semiclassical bifurcations and topological phase transitions in a one-dimensional lattice of coupled Lipkin-Meshkov-Glick models," Phys. Rev. E, vol. 94, no. 3, Sept. 2016. doi: 10.1103/PhysRevE.94.032123
| en |