URI | http://purl.tuc.gr/dl/dias/511D251A-FCD6-4B17-95D6-748E0F42FB40 | - |
Identifier | https://doi.org/10.26233/heallink.tuc.78971 | - |
Language | en | - |
Extent | 48 pages | en |
Title | ΑΜRules for fraud detection with Spark Streaming | el |
Title | ΑΜRules για ανίχνευση απάτης με Spark Streaming | el |
Creator | Fragiadoulakis Emmanouil | en |
Creator | Φραγκιαδουλακης Εμμανουηλ | el |
Contributor [Thesis Supervisor] | Deligiannakis Antonios | en |
Contributor [Thesis Supervisor] | Δεληγιαννακης Αντωνιος | el |
Contributor [Committee Member] | Garofalakis Minos | en |
Contributor [Committee Member] | Γαροφαλακης Μινως | el |
Contributor [Committee Member] | Lagoudakis Michail | en |
Contributor [Committee Member] | Λαγουδακης Μιχαηλ | el |
Publisher | Πολυτεχνείο Κρήτης | el |
Publisher | Technical University of Crete | en |
Academic Unit | Technical University of Crete::School of Electrical and Computer Engineering | en |
Academic Unit | Πολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών | el |
Content Summary | In this day and age, an important part of our daily interaction with our electronic devices is on-line payments, which results in a great amount of transactions. In order to handle these transactions, to determine if they're fraudulent, we need an efficient, distributed and streamable machine learning algorithm, that can process big amount of incoming data and react to it instantly. Thus, we implemented the distributed Adaptive Model Rules on Spark Streaming, an extension of the Spark Core API which enables the development of scalable, fault-tolerant streaming applications. Adaptive Model Rules is an one-pass algorithm for training its model from streaming data and is robust to outliers and irrelevant features. The experimental results concluded, that there is a noticeable speedup from Vertical Adaptive Model Rules to Hybrid Adaptive Model Rules at the cost of reduced accuracy. | en |
Content Summary | Στις μέρες μας, ένα σημαντικό κομμάτι της καθημερινότητας μας όσον αφορά τις ηλεκτρονικές μας συσκευές είναι οι online πληρωμές, το οποίο έχει ως αποτέλεσμα πληθώρα συναλλαγών. Με σκοπό να διαχειριστούμε αυτές τις συναλλαγές, για να καθορίσουμε αν είναι απάτη, χρειαζόμαστε έναν αποτελεσματικό, κατανεμημένο και streamable αλγόριθμο μηχανικής μάθησης, όπου να μπορεί να διαχειριστεί μεγάλη μέγεθος εισερχόμενων δεδομένων και να αντιδρά σε αυτά άμεσα. Έτσι, υλοποιήσαμε τον κατανεμημένο Adaptive Model Rules στο Spark Streaming, μία επέκταση του Spark Core API, που επιτρέπει την υλοποίηση scalable, με ανθεκτικότητα σε σφάλματα εφαρμογών streaming. O Αdaptive Model Rules είναι ένας αλγόριθμος ενός περάσματος για την εκπαίδευση του μοντέλου του από ροές δεδομένων και είναι ανθεκτικός σε απότομες αλλαγές και άσχετες ιδιότητες. Τα πειραματικά αποτελέσματα κατέληξαν στο ότι υπάρχει σημαντική αλλαγή στο χρόνο από τον κάθετο Adaptive Model Rules στο υβριδικό Αdaptive Model Rules, το οποίο έχει ως κόστος την μείωση της ακρίβειας. | el |
Type of Item | Διπλωματική Εργασία | el |
Type of Item | Diploma Work | en |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2018-10-05 | - |
Date of Publication | 2018 | - |
Subject | Ανίχνευση απάτης | el |
Subject | Fraud detection | en |
Subject | Machine learning | en |
Subject | Spark Streaming | en |
Bibliographic Citation | Emmanouil Fragiadoulakis, "ΑΜRules for fraud detection with Spark Streaming", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2018 | en |
Bibliographic Citation | Εμμανουήλ Φραγκιαδουλάκης, "ΑΜRules για ανίχνευση απάτης με Spark Streaming", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2018 | el |