URI | http://purl.tuc.gr/dl/dias/04B2AEDF-AE25-423A-85B7-32F9EB6663F0 | - |
Identifier | https://doi.org/10.26233/heallink.tuc.79054 | - |
Language | el | - |
Extent | 4192 Kilobytes | el |
Title | Εφαρμοσμένη ανάλυση συστάδων | el |
Title | Applied cluster analysis | en |
Creator | Stratinakis Nikolaos | en |
Creator | Στρατινακης Νικολαος | el |
Contributor [Thesis Supervisor] | Daras Tryfonas | en |
Contributor [Thesis Supervisor] | Δαρας Τρυφωνας | el |
Contributor [Committee Member] | Delis Anargyros | en |
Contributor [Committee Member] | Δελης Αναργυρος | el |
Contributor [Committee Member] | Manousakis Antonios | en |
Contributor [Committee Member] | Μανουσακης Αντωνιος | el |
Publisher | Πολυτεχνείο Κρήτης | el |
Publisher | Technical University of Crete | en |
Academic Unit | Technical University of Crete::School of Production Engineering and Management | en |
Academic Unit | Πολυτεχνείο Κρήτης::Σχολή Μηχανικών Παραγωγής και Διοίκησης | el |
Content Summary | H ανάλυση συστάδων (cluster analysis) είναι μια μέθοδος που έχει σαν σκοπό να κατατάξει σε ομάδες υπάρχουσες παρατηρήσεις χρησιμοποιώντας την πληροφορία που υπάρχει σε κάποιες μεταβλητές. Κοιτάζοντας δηλαδή τις παρατηρήσεις μπορεί να πει κανείς πόσο “όμοιες” είναι ως προς κάποιον αριθμό μεταβλητών, δημιουργώντας ομάδες (από παρατηρήσεις) που μοιάζουν μεταξύ τους. Μια επιτυχημένη ανάλυση θα πρέπει να καταλήξει σε ομάδες για τις οποίες οι παρατηρήσεις μέσα σε κάθε ομάδα θα είναι όσο γίνεται πιο ομοιογενείς αλλά παρατηρήσεις διαφορετικών ομάδων θα διαφέρουν όσο γίνεται περισσότερο. Η ομαδοποίηση γίνεται με τη βοήθεια της έννοιας της απόστασης ή της ομοιότητας
Η ανάλυση συστάδων είναι σημαντική όχι μόνο σε επιστήμες όπως η κοινωνιολογία, η βιολογία και η στατιστική, αλλά και σε πολλούς τομείς της πληροφορικής όπως η αναγνώριση προτύπων, η εξόρυξη γνώσης, η ανάκτηση δεδομένων, η τεχνητή νοημοσύνη και η μηχανική μάθηση.
Στo 1o κεφάλαιο της διπλωματικής εργασίας δίνεται μια εισαγωγή στην Ανάλυση Συστάδων (φιλοσοφία της Α.Σ., μέθοδοι, πλεονεκτήματα/μειονεκτήματα της Α.Σ. και τέλος προβλήματα εφαρμογής της). Στο 2ο κεφάλαιο περιγράφονται τα κυριότερα μέτρα απόστασης και ομοιότητας (ανάλογα με το είδος των μεταβλητών) που χρησιμοποιεί κανείς στην Α.Σ. και δίνονται αναλυτικά παραδείγματα. Στο 3ο κεφάλαιο αναφέρονται οι βασικές μέθοδοι σύνδεσης ομάδων και περιγράφονται οι ιεραρχικές μέθοδοι ταξινόμησης, με αναλυτικά παραδείγματα. Στο 4ο κεφάλαιο περιγράφεται η μέθοδος μη ιεραρχικής ταξινόμησης k-means. Τέλος, στο 5ο κεφάλαιο δίνεται μια εφαρμογή της Α.Σ. στην ταξινόμηση σταθμών μέτρησης ατμοσφαιρικής ρύπανσης στην περιοχή του Λεκανοπεδίου Αττικής. | el |
Content Summary | Cluster analysis is a method designed to classify existing observations using the information that exists in some variables. Looking at the observations, one can say how similar they are to a number of variables, creating groups (from observations) that resemble each other. A successful analysis should result in groups for which the observations within each group will be as homogeneous as possible, but observations of different groups will vary as much as possible. Grouping takes place with the help of the concept of distance or similarity.
Cluster analysis is important not only in many sciences such as sociology, biology and statistics, but also in many areas of information technology such as pattern recognition, knowledge mining, data recovery, artificial intelligence, and mechanical learning.
In the 1st chapter of the thesis there is an introduction to the Cluster Analysis (philosophy of the C.A., methods, advantages / disadvantages of the C.A. and finally problems of its implementation). The 2nd chapter describes the main measures of distance and similarity (depending on the type of variables) used by the C.A. and detailed examples are given. Chapter 3 lists the basic methods of group linkage and describes hierarchical classification methods, with examples. The 4th chapter describes the non-hierarchical k-means method. Finally, in the 5th chapter an application of the C.A., in the classification of atmospheric pollution measuring stations in the Attica region, is given. | en |
Type of Item | Μεταπτυχιακή Διατριβή | el |
Type of Item | Master Thesis | en |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2018-10-10 | - |
Date of Publication | 2018 | - |
Subject | Ιεραρχικές μέθοδοι ομαδοποίησης | el |
Subject | Ατμοσφαιρική ρύπανση | el |
Subject | Μη ιεραρχική ομαδοποίηση | el |
Subject | Μέτρα ομοιότητας | el |
Subject | Cluster analysis | en |
Subject | Ανάλυση συστάδων | el |
Bibliographic Citation | Νικόλαος Στρατινάκης, "Εφαρμοσμένη ανάλυση συστάδων ", Μεταπτυχιακή Διατριβή, Σχολή Μηχανικών Παραγωγής και Διοίκησης, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2018 | el |
Bibliographic Citation | Nikolaos Stratinakis, "Applied cluster analysis", Master Thesis, School of Production Engineering and Management, Technical University of Crete, Chania, Greece, 2018 | en |