Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Highly efficient reconfigurable parallel graph cuts for embedded vision

Nikitakis Antonios, Papaefstathiou Ioannis

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/9262DC8C-9A71-4EF4-8E14-1B6607EAB2C5-
Αναγνωριστικόhttps://ieeexplore.ieee.org/document/7459528-
Γλώσσαen-
Μέγεθος6 pagesen
ΤίτλοςHighly efficient reconfigurable parallel graph cuts for embedded visionen
ΔημιουργόςNikitakis Antoniosen
ΔημιουργόςΝικητακης Αντωνιοςel
ΔημιουργόςPapaefstathiou Ioannisen
ΔημιουργόςΠαπαευσταθιου Ιωαννηςel
ΕκδότηςInstitute of Electrical and Electronics Engineersen
ΠερίληψηGraph cuts are very popular methods for combinatorial optimization mainly utilized, while also being the most computational intensive part, in several vision schemes such as image segmentation and stereo correspondence; their advantage is that they are very efficient as they provide guarantees about the optimality of the reported solution. Moreover, when those vision schemes are executed in mobile devices there is a strong need, not only for real-time processing, but also for low power/energy consumption. In this paper, we present a novel architecture for the implementation, in reconfigurable hardware, of one of the most widely used graph cuts algorithms, which is also the fastest sequential one, called BK. Our novelty comes from the fact that we use a 2-level hierarchical decomposition method to parallelize it in a very modular way allowing it to be efficiently implemented in FPGAs with different number of logic cells and/or memory resources. We fast-prototyped the architecture, using a High level synthesis workflow, in a state-of-the-art FPGA device; our implementation outperforms an optimized reference software solution by more than 6x, while consuming 35 times less energy;. To the best of our knowledge this is the first parallel implementation of this very widely used algorithm in reconfigurable hardware.en
ΤύποςΠλήρης Δημοσίευση σε Συνέδριοel
ΤύποςConference Full Paperen
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2018-10-16-
Ημερομηνία Δημοσίευσης2016-
Θεματική ΚατηγορίαDual decompositionen
Θεματική ΚατηγορίαEmbedded systemen
Θεματική ΚατηγορίαFPGAen
Θεματική ΚατηγορίαGraph cutsen
Θεματική ΚατηγορίαLow poweren
Θεματική ΚατηγορίαMarkov random fielden
Βιβλιογραφική ΑναφοράA. Nikitakis and I. Papaefstathiou, "Highly efficient reconfigurable parallel graph cuts for embedded vision," in 19th Design, Automation and Test in Europe Conference and Exhibition, 2016, pp. 1405-1410.en

Υπηρεσίες

Στατιστικά