Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Numerical study of dynamic vibrations impact on railway embankments

Birikakis Emmanouil

Full record


URI: http://purl.tuc.gr/dl/dias/CB526247-59AA-4677-B4F6-90B2A3F7AA8A
Year 2018
Type of Item Master Thesis
License
Details
Appears in Collections

Summary

The main aim of this thesis is to investigate the important and multidisciplinary issue of ground vibrations caused by high-speed trains. For this purpose, the existing international literature has been studied, followed by a detailed numerical investigation of the impact of the vibrations on the railway embankment.. Firstly, a general overview of the subject is presented, focusing on the basic concepts of railways as well as the theoretical aspects of elastic waves propagation. The mechanism of the generation of these vibrations and the parameters that influence their propagation are also described. Subsequently, the available methods for simulating this complex phenomenon are presented. Moreover, several existing models that are used to simulate train, railway infrastructure and ground are presented. Then, mitigation measures for limiting train vibrations are briefly outlined, with particular reference on the implementation of expanded polystyrene geofoam (EPS) as basic construction material of the rail embankment. Finally, the numerical analyses, the results and the related discussion, as well as the derived conclusions and suggestions for further research are presented. Autocad 2017 software was used to design the three-dimensional model of the railway-embankment-ground system, while the finite element software ANSYS 17.0 has been for utilized for the numerical analyses. In the performed analyses, several key factors are investigated: the impact of the train speed, the usage of EPS and the supporting ground type (soil or rock). The maximum vertical displacements are examined as a rational measure of the induced vibrations magnitude.

Available Files

Services

Statistics