URI | http://purl.tuc.gr/dl/dias/7A490A3E-51FF-47C7-8207-F9AF472996E8 | - |
Αναγνωριστικό | https://www.eccomasproceedia.org/conferences/eccomas-congresses/eccomas-congress-2016/1905 | - |
Αναγνωριστικό | https://doi.org/10.7712/100016.1905.9110 | - |
Γλώσσα | en | - |
Μέγεθος | 19 pages | en |
Τίτλος | Using improved radial basis functions methods for fluid-structure coupling and mesh deformation | en |
Δημιουργός | Strofylas Giorgos | en |
Δημιουργός | Στροφυλας Γιωργος | el |
Δημιουργός | Mazanakis Georgios | en |
Δημιουργός | Μαζανακης Γεωργιος | el |
Δημιουργός | Sarakinos Sotirios | en |
Δημιουργός | Σαρακηνος Σωτηριος | el |
Δημιουργός | Lygidakis Georgios | en |
Δημιουργός | Λυγιδακης Γεωργιος | el |
Δημιουργός | Nikolos Ioannis | en |
Δημιουργός | Νικολος Ιωαννης | el |
Εκδότης | National Technical University of Athens | en |
Περίληψη | In this work the development of a partitioned FSI coupling procedure is reported, aiming to facilitate interaction between an open-source CSD (Computational Structural Dynamics) and an in-house academic CFD (Computational Fluid Dynamics) code. Attention is mainly directed towards the efficient and accurate transfer of predicted displacements, velocities (by CSD) and loads (by CFD). More precisely, spatial coupling is achieved using Radial Basis Functions (RBFs) interpolation, which enables point-based interaction, needing therefore no information for connectivities and, consequently, allowing for the utilization of different type or even intersecting structural and flow grids. Although RBFs method seems to be particularly attractive for both data transfer and mesh deformation, it suffers from a significant drawback; it calls for relatively excessive memory and computation time requirements (in its initial formulation). In case of data transfer the Partition of Unity (PoU) approach is adopted as a remedy of the aforementioned deficiency, which regards the decomposition of the examined problem into several smaller ones, to be solved independently and hence more efficiently. In mesh deformation though, improvement of computational performance is succeeded with a surface point reduction technique, based on the agglomeration of the adjacent boundary nodes, i.e., on the fusion of the RBFs centers. Despite the notable reduction of RBFs base points, the proposed method preserves sufficiently the quality of the initial grid. The proposed algorithm is evaluated against a benchmark (for FSI solvers) test case, considering the analysis of the wind action over a standard tall building model. The obtained numerical results confirm its potential for such simulations, highlighting additionally the radically improved computational performance of data transfer and grid deformation procedures. | en |
Τύπος | Πλήρης Δημοσίευση σε Συνέδριο | el |
Τύπος | Conference Full Paper | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2018-11-01 | - |
Ημερομηνία Δημοσίευσης | 2016 | - |
Θεματική Κατηγορία | Fluid-structure interaction | en |
Θεματική Κατηγορία | Information transfer | en |
Θεματική Κατηγορία | Mesh deformation | en |
Θεματική Κατηγορία | Non-matching meshes | en |
Θεματική Κατηγορία | Partitioned coupling | en |
Θεματική Κατηγορία | Radial Basis Functions | en |
Βιβλιογραφική Αναφορά | G. A. Strofylas, G. I. Mazanakis, S. S. Sarakinos, G. N. Lygidakis and I. K. Nikolos, "Using improved radial basis functions methods for fluid-structure coupling and mesh deformation," in 7th European Congress on Computational Methods in Applied Sciences and Engineering, 2016, pp. 1545-1563. doi: 10.7712/100016.1905.9110 | en |