Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

OSLα: Online Structure Learning using background knowledge axiomatization

Michelioudakis Evangelos, Skarlatidis Anastasios, Paliouras, Georgios, Artikis, Alexander

Simple record


URIhttp://purl.tuc.gr/dl/dias/90904717-E643-413F-9170-BDE1DA2DBBBD-
Identifierhttps://link.springer.com/chapter/10.1007%2F978-3-319-46128-1_15-
Identifierhttps://doi.org/10.1007/978-3-319-46128-1_15-
Languageen-
Extent16 pagesen
TitleOSLα: Online Structure Learning using background knowledge axiomatizationel
CreatorMichelioudakis Evangelosen
CreatorΜιχελιουδακης Ευαγγελοςel
CreatorSkarlatidis Anastasiosen
CreatorPaliouras, Georgiosen
CreatorArtikis, Alexanderen
PublisherSpringer Verlagen
Content SummaryWe present OSLα—an online structure learner for Markov Logic Networks (MLNs) that exploits background knowledge axiomatization in order to constrain the space of possible structures. Many domains of interest are characterized by uncertainty and complex relational structure. MLNs is a state-of-the-art Statistical Relational Learning framework that can naturally be applied to domains governed by these characteristics. Learning MLNs from data is challenging, as their relational structure increases the complexity of the learning process. In addition, due to the dynamic nature of many real-world applications, it is desirable to incrementally learn or revise the model’s structure and parameters. Experimental results are presented in activity recognition using a probabilistic variant of the Event Calculus (MLN−EC) as background knowledge and a benchmark dataset for video surveillance.en
Type of ItemΠλήρης Δημοσίευση σε Συνέδριοel
Type of ItemConference Full Paperen
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2018-11-13-
Date of Publication2016-
SubjectEvent calculusen
SubjectMarkov logic networksen
SubjectUncertaintyen
Bibliographic CitationE. Michelioudakis, A. Skarlatidis, G. Paliouras and A. Artikis, "OSLα: Online Structure Learning using background knowledge axiomatization," in Joint European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 2016, pp. 232-247. doi: 10.1007/978-3-319-46128-1_15el

Services

Statistics