Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Shakedown analysis of plate bending under stochastic uncertainity by chance constraint programming

Trân Ngoc Trình, Trần Thanh Ngoc, Matthies Hermann Georg, Stavroulakis Georgios, Staat Manfred

Simple record


URIhttp://purl.tuc.gr/dl/dias/74AFBD55-279B-4240-AB98-2E2CA85729F6-
Identifierhttps://www.eccomasproceedia.org/conferences/eccomas-congresses/eccomas-congress-2016/2012-
Identifierhttps://doi.org/10.7712/100016.2012.11106-
Languageen-
Extent13 pagesen
TitleShakedown analysis of plate bending under stochastic uncertainity by chance constraint programmingen
CreatorTrân Ngoc Trìnhen
CreatorTrần Thanh Ngocen
CreatorMatthies Hermann Georgen
CreatorStavroulakis Georgiosen
CreatorΣταυρουλακης Γεωργιοςel
CreatorStaat Manfreden
PublisherNational Technical University of Athensen
Content SummaryIn this paper we propose a stochastic programming to analyze limit and shakedown of plate bending under uncertainty conditions of strength. The Kirchhoff plate theory is used to formulate chance constrained problems. Based on the duality theory, the shakedown load multiplier formulated by the kinematic theorem is proved actually to be the dual form of the shakedown load multiplier formulated by static theorem. In this investigation a dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit and the shakedown limit.en
Type of ItemΠλήρης Δημοσίευση σε Συνέδριοel
Type of ItemConference Full Paperen
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2018-11-22-
Date of Publication2016-
SubjectChance constrained programmingen
SubjectLimit analysisen
SubjectNon-linear programmingen
SubjectShakedown analysisen
SubjectStochastic programmingen
Bibliographic CitationN. T. Trân, T. N. Trân, H.G. Matthies, G. E. Stavroulakis and M. Staat, "Shakedown analysis of plate bending under stochastic uncertainity by chance constraint programming," in 7th European Congress on Computational Methods in Applied Sciences and Engineering, 2016, pp. 3007-3019. doi: 10.7712/100016.2012.11106en

Available Files

Services

Statistics