Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Gibbs Markov random fields with continuous values based on the modified planar rotator model

Žukovič, Milan, Christopoulos Dionysios

Simple record


URIhttp://purl.tuc.gr/dl/dias/59246F3B-3965-4C81-BED7-091E17E29432-
Identifierhttps://doi.org/10.1103/PhysRevE.98.062135-
Identifierhttps://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.062135-
Languageen-
Extent22 pagesen
TitleGibbs Markov random fields with continuous values based on the modified planar rotator modelen
CreatorŽukovič, Milanen
CreatorChristopoulos Dionysiosen
CreatorΧριστοπουλος Διονυσιοςel
PublisherAmerican Physical Societyen
Content SummaryWe introduce a Gibbs Markov random field for spatial data on Cartesian grids based on the modified planar rotator (MPR) model of statistical physics. The MPR model captures spatial correlations using nearest-neighbor interactions of continuously valued spins and does not rely on Gaussian assumptions. The only model parameter is the reduced temperature, which we estimate by means of an ergodic specific energy matching principle. We propose an efficient hybrid Monte Carlo simulation algorithm that leads to fast relaxation of the MPR model and allows vectorization. Consequently, the MPR model's computational time for inference and simulation scales approximately linearly with system size. This makes it more suitable for big data sets, such as satellite and radar images, than conventional geostatistical approaches. The performance (accuracy and computational speed) of the MPR model is validated with conditional simulation of Gaussian synthetic and non-Gaussian real data (atmospheric heat release measurements and Walker-lake DEM-based concentrations) and comparisons with standard gap-filling methods. © 2018 American Physical Society.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2019-05-21-
Date of Publication2018-
SubjectClassical statistical mechanicsen
SubjectEnvironmental researchen
SubjectStochastic inferenceen
SubjectStochastic processesen
SubjectClassical spin modelsen
SubjectEquilibrium lattice modelsen
SubjectLattice models in statistical physicsen
SubjectComputational complexityen
SubjectData analysisen
SubjectHybrid Monte Carlo algorithmen
SubjectMarkovian processesen
SubjectMetropolis algorithmen
SubjectMonte Carlo methodsen
SubjectSpatial modelingen
SubjectStatistical methodsen
SubjectStochastic analysisen
SubjectXY modelen
SubjectGaussian distributionen
SubjectImage segmentationen
SubjectIntelligent systemsen
SubjectMarkov processesen
SubjectStatistical Physicsen
Bibliographic CitationD.T. Hristopulos and M. Žukovič, "Gibbs Markov random fields with continuous values based on the modified planar rotator model", Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 98, no. 6, Dec. 2018. doi: 10.1103/PhysRevE.98.062135en

Services

Statistics