URI | http://purl.tuc.gr/dl/dias/F3FB7969-74D0-467D-92BA-E95DFA0298E2 | - |
Αναγνωριστικό | https://doi.org/10.26233/heallink.tuc.82631 | - |
Γλώσσα | en | - |
Μέγεθος | 34 pages | en |
Τίτλος | Structural health monitoring of a wind turbine wing using neural networks | en |
Τίτλος | Παρακολούθηση δομηκής ακεραιότητας σε πτέρυγα ανεμογεννήτριας με χρήση νευρωνικών δικτύων | el |
Δημιουργός | Paterakis Emmanouil | en |
Δημιουργός | Πατερακης Εμμανουηλ | el |
Συντελεστής [Επιβλέπων Καθηγητής] | Stavroulakis Georgios | en |
Συντελεστής [Επιβλέπων Καθηγητής] | Σταυρουλακης Γεωργιος | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Stavroulaki Maria | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Σταυρουλακη Μαρια | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Bakatsaki Maria | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Μπακατσακη Μαρια | el |
Εκδότης | Technical University of Crete | en |
Εκδότης | Πολυτεχνείο Κρήτης | el |
Ακαδημαϊκή Μονάδα | Technical University of Crete::School of Production Engineering and Management | en |
Ακαδημαϊκή Μονάδα | Πολυτεχνείο Κρήτης::Σχολή Μηχανικών Παραγωγής και Διοίκησης | el |
Περιγραφή | Προτυχιακή εργασία που κατατέθηκε στην σχολή Μηχανικών Παραγωγής και Διοίκησης για την πλήρωση των υποχρώσεων για την απόκτηση διπλώματος Μηχανικού Παραγωγής και Διοίκησης | el |
Περίληψη | Due to the stochastic nature of environmental loadings, a lot of interest is paid in the discovery of possible damages of the involved equipment in modern industry. In wind turbine's blades, where access is difficult and expensive, the development of a smart structural health monitoring system is essential. In the present paper, a large-scale composite wind turbine blade model is designed and used for the detection of several damage scenarios. The process which is presented here is mainly based on the development of monitoring techniques which exploit the capabilities of artificial neural networks. These techniques can provide the exact position of possible damages, under given external loading scenarios. Moreover, the use of such methods decreases significantly the need of external intervention and at the same time it increases the accuracy of the whole approach. The above processes are simulated using the finite element method. | en |
Περίληψη | Λόγω του στοχαστικού χαρακτήρα των περιβαλλοντικών φορτίων, καταβάλλεται μεγάλη κάλυψη πιθανών ζημιών του εμπλεκόμενου εξοπλισμού στη σύγχρονη βιομηχανία. Στο φτερό της ανεμογεννήτριας, όπου η πρόσβαση είναι δύσκολη και δαπανηρή, η ανάπτυξη ενός έξυπνου συστήματος παρακολούθησης δομικής ακεραιότητας είναι απαραίτητη. Στην παρούσα εργασία, ένα σύνθετο μοντέλο φτερού ανεμογεννήτριας μεγάλης κλίμακας έχει σχεδιαστεί και χρησιμοποιηθεί για την ανίχνευση αρκετών σεναρίων ζημιών. Η διαδικασία που παρουσιάζεται εδώ βασίζεται κυρίως στην ανάπτυξη τεχνικών παρακολούθησης εκμεταλλευόμενη τις δυνατότητες των τεχνητών νευρωνικών δικτύων. Αυτές οι τεχνικές μπορούν να παράσχουν την ακριβής θέση πιθανών ζημιών, υπό δεδομένα σενάρια εξωτερικής φόρτωσης. Επιπλέον, η χρήση των μεθόδων αυτών μειώνουν σημαντικά την ανάγκη εξωτερικής παρέμβασης και ταυτόχρονα αυξάνουν την ακρίβεια ολόκληρης της προσέγγισης. Οι παραπάνω διαδικασίες προσομοιώνονται χρησιμοποιώντας την μέθοδος των πεπερασμένων στοιχείων. | el |
Τύπος | Διπλωματική Εργασία | el |
Τύπος | Diploma Work | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2019-07-10 | - |
Ημερομηνία Δημοσίευσης | 2019 | - |
Θεματική Κατηγορία | Structural health monitoring | en |
Θεματική Κατηγορία | Δομική ακεραιότητα κατασκευών | el |
Βιβλιογραφική Αναφορά | Emmanouil Paterakis, "Structural health monitoring of a wind turbine wing using neural networks", Diploma Work, School of Production Engineering and Management, Technical University of Crete, Chania, Greece, 2019 | en |
Βιβλιογραφική Αναφορά | Εμμανουήλ Πατεράκης, "Παρακολούθηση δομηκής ακεραιότητας σε πτέρυγα ανεμογεννήτριας με χρήση νευρωνικών δικτύων", Διπλωματική Εργασία, Σχολή Μηχανικών Παραγωγής και Διοίκησης, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2019 | el |