Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

The nature of laponite: pure hectorite or a mixture of different trioctahedral phases?

Christidis Georgios, Aldana Carlos, Chryssikos Georgios D., Gionis, Vassilios, Kalo Hussein, Stöter Matthias, Breu Josef, Robert Jean Louis

Simple record


URIhttp://purl.tuc.gr/dl/dias/5C802CD8-CC54-4044-A24E-FBFBB69A97A0-
Identifierhttps://doi.org/10.3390/min8080314-
Identifierhttps://www.mdpi.com/2075-163X/8/8/314-
Languageen-
Extent15 pagesen
TitleThe nature of laponite: pure hectorite or a mixture of different trioctahedral phases?en
CreatorChristidis Georgiosen
CreatorΧρηστιδης Γεωργιοςel
CreatorAldana Carlosen
CreatorChryssikos Georgios D.en
CreatorGionis, Vassiliosen
CreatorKalo Husseinen
CreatorStöter Matthiasen
CreatorBreu Josefen
CreatorRobert Jean Louisen
PublisherMDPIen
Content SummaryA series of laponites and synthetic OH-and fluorinated hectorites prepared from hydrothermal and melting experiments at both industrial and laboratory scale were examined with XRD and FTIR (MIR and NIR) to determine their mineralogical composition and possible compositional heterogeneity. The end materials contained both Li-and Na-bearing phases. The industrial hydrothermal OH-smectites prepared at low temperatures consist of random mixed layer hectorite-stevensite-kerolite with about 40–50% hectorite layers, the remaining being stevensite and kerolite at roughly equal proportions. The FTIR spectra of these smectites contain, besides the main Mg3 OH stretching/overtone bands at 3695–3690 and 7225–7214 cm−1, respectively, additional OH overtone bands at ~3716 and 7265 cm−1 (hydrated state). These bands might be linked to Mg2 LiOH stretching modes. The melt-derived smectites are kerolite-free but still contain stevensite layers, although the preparation methods involved heating in the excess of 1000◦ C. In these smectites Li might be partitioned to both octahedral and interlayer sites. Subsequent annealing of the melt-derived Mg-Li smectites caused migration of the exchangeable Li to the vacant octahedral due to the Hofmann-Klemen effect and thus decrease of the layer charge, as was indicated by the νO-D method. Hydrothermal synthesis of Mg-Li smectites at high temperature (400◦ C) and pressure (1 kbar), yielded pure hectorite without stevensite or kerolite domains. en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2019-08-28-
Date of Publication2018-
SubjectHectoriteen
SubjectKeroliteen
SubjectLaponiteen
SubjectSmectite nanoparticlesen
SubjectStevensiteen
SubjectSynthesisen
Bibliographic CitationG. E. Christidis, C. Aldana, G. D. Chryssikos, V. Gionis, H. Kalo, M. Stöter, J. Breu and J.-L. Robert, "The nature of laponite: pure hectorite or a mixture of different trioctahedral phases?," Minerals, vol. 8, no. 8, Aug 2018. doi: 10.3390/min8080314en

Available Files

Services

Statistics