URI | http://purl.tuc.gr/dl/dias/491D12EE-D6EB-4D31-B04E-6A25CE948AD5 | - |
Identifier | https://doi.org/10.1145/3200947.3201010 | - |
Identifier | https://dl.acm.org/citation.cfm?id=3201010 | - |
Language | en | - |
Extent | 9 pages | en |
Title | Multiagent reinforcement learning methods to resolve demand capacity balance problems | en |
Creator | Spatharis Christos | en |
Creator | Kravaris Theocharis | en |
Creator | Vouros, George A | en |
Creator | Blekas Konstantinos D. | en |
Creator | Chalkiadakis Georgios | en |
Creator | Χαλκιαδακης Γεωργιος | el |
Creator | García José Manuel Cordero | en |
Creator | Fernandez Esther Calvo | en |
Publisher | Association for Computing Machinery | en |
Content Summary | In this article, we explore the computation of joint policies for autonomous agents to resolve congestions problems in the air traffic management (ATM) domain. Agents, representing flights, have limited information about others’ payoffs and preferences, and need to coordinate to achieve their tasks while adhering to operational constraints. We formalize the problem as a multiagent Markov decision process (MDP) towards deciding flight delays to resolve demand and capacity balance (DCB) problems in ATM. To this end, we present multiagent reinforcement learning methods that allow agents to interact and form own policies in coordination with others. Experimental study on real-world cases, confirms the effectiveness of our approach in resolving the demand-capacity balance problem. | en |
Type of Item | Πλήρης Δημοσίευση σε Συνέδριο | el |
Type of Item | Conference Full Paper | en |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2019-08-30 | - |
Date of Publication | 2018 | - |
Subject | Air Traffic Management | en |
Subject | Congestion problems | en |
Subject | Demand Capacity Balance | en |
Subject | Multi-agent reinforcement learning | en |
Bibliographic Citation | C. Spatharis, T. Kravaris, G. A. Vouros, K. Blekas, G. Chalkiadakis, J.M.C. Garcia and E.C. Fernandez, "Multiagent reinforcement learning methods to resolve demand capacity balance problems," in 10th Hellenic Conference on Artificial Intelligence, 2018. doi: 10.1145/3200947.3201010 | en |