Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Streaming data correlation on GPUs

Fotopoulos Spyridon, Malakonakis Pavlos, Chrysos Grigorios, Dollas Apostolos

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/CDDBC2F8-F64E-4B0C-B888-139268831015
Έτος 2018
Τύπος Πλήρης Δημοσίευση σε Συνέδριο
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά S. Fotopoulos, P. Malakonakis, G. Chrysos and A. Dollas, "Streaming data correlation on GPUs," in 7th International Conference on Modern Circuits and Systems Technologies, 2018, pp. 1-5. doi: 10.1109/MOCAST.2018.8376588 https://doi.org/10.1109/MOCAST.2018.8376588
Εμφανίζεται στις Συλλογές

Περίληψη

Distributed systems have been widely used for applications that need real-time processing over high volume and high speed data streams. This work presents the architecture and the implementation of a correlation algorithm for streaming data on a Graphic Processing Unit (GPU). The proposed system accelerates the correlation calculation of the Hayashi-Yoshida algorithm up to 10x vs. a conventional distributed system, and these performance characteristics apply to a broad category of correlation estimators. Furthermore, our system offers real-time correlation computation over high-speed streaming data and demonstrates how a batch processing algorithm can be applied to real-time streaming data. The results show that GPUs are a highly promising platform for correlation estimators as they improve significantly the volume of streaming data that can be processed in real time vs. other approaches that use 'unlimited' conventional computing resources.

Υπηρεσίες

Στατιστικά