Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

A new synergistic approach for monitoring wetlands using Sentinels -1 and 2 data with object-based machine learning algorithms

Whyte Andrew, Ferentinos, Konstantinos P., 1975-, Petropoulos Georgios

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/D9F64055-1042-428E-B7A2-40DD58417F4C-
Αναγνωριστικόhttps://doi.org/10.1016/j.envsoft.2018.01.023-
Αναγνωριστικόhttps://www.sciencedirect.com/science/article/pii/S1364815217311295-
Γλώσσαen-
Μέγεθος15 pagesen
ΤίτλοςA new synergistic approach for monitoring wetlands using Sentinels -1 and 2 data with object-based machine learning algorithmsen
ΔημιουργόςWhyte Andrewen
ΔημιουργόςFerentinos, Konstantinos P., 1975-en
ΔημιουργόςPetropoulos Georgiosen
ΔημιουργόςΠετροπουλος Γεωργιοςel
ΕκδότηςElsevieren
ΠερίληψηIn this work the synergistic use of Sentinel-1 and 2 combined with the System for Automated Geoscientific Analyses (SAGA) Wetness Index in the content of land use/cover (LULC) mapping with emphasis in wetlands is evaluated. A further objective has been to develop a new Object-based Image Analysis (OBIA) approach for mapping wetland areas using Sentinel-1 and 2 data, where the latter is also tested against two popular machine learning algorithms (Support Vector Machines - SVMs and Random Forests - RFs). The highly vulnerable iSimangaliso Wetland Park was used as the study site. Results showed that two-part image segmentation could efficiently create object features across the study area. For both classification algorithms, an increase in overall accuracy was observed when the full synergistic combination of available datasets. A statistically significant difference in classification accuracy at all levels between SVMs and RFs was also reported, with the latter being up to 2.4% higher. SAGA wetness index showed promising ability to distinguish wetland environments, and in combination with Sentinel-1 and 2 synergies can successfully produce a land use and land cover classification in a location where both wetland and non-wetland classes exist.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2019-09-10-
Ημερομηνία Δημοσίευσης2018-
Θεματική ΚατηγορίαObject-based classificationen
Θεματική ΚατηγορίαRandom Forestsen
Θεματική ΚατηγορίαSentinel-1en
Θεματική ΚατηγορίαSentinel-2en
Θεματική ΚατηγορίαSupport Vector Machinesen
Βιβλιογραφική ΑναφοράA. Whyte, K.P. Ferentinos and G.P. Petropoulos, "A new synergistic approach for monitoring wetlands using Sentinels -1 and 2 data with object-based machine learning algorithms," Environ. Model. Softw., vol. 104, pp. 40-54, Jun. 2018. doi: 10.1016/j.envsoft.2018.01.023en

Υπηρεσίες

Στατιστικά