Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters

Karaolia Popi, Michael-Kordatou Irene, Hapeshi Evroula, Drosou Aikaterini, Bertakis Ioannis, Christofilos Dimitris, Armatas, Gerasimos S, Sygellou Lamprini, Schwartz Thomas, Xekoukoulotakis Nikos, Fatta-Kassinos, Despo

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/43ED8303-9C57-40BF-B9EC-986F2D2B3B3D
Έτος 2018
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά P. Karaolia, I. Michael-Kordatou, E. Hapeshi, C. Drosou, Y. Bertakis, D. Christofilos, G.S. Armatas, L. Sygellou, T. Schwartz, N.P. Xekoukoulotakis and D. Fatta-Kassinos, "Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters," Appl. Catal., B-Environ., vol. 224, pp. 810-824, May 2018. doi: 10.1016/j.apcatb.2017.11.020 https://doi.org/10.1016/j.apcatb.2017.11.020
Εμφανίζεται στις Συλλογές

Περίληψη

The present work investigated: (i) the removal of the antibiotics sulfamethoxazole (SMX), erythromycin (ERY) and clarithromycin (CLA); (ii) the inactivation of the total and antibiotic-resistant E. coli along with their regrowth potential after treatment; (iii) the removal of the total genomic DNA content; and (iv) the removal of selected antibiotic resistance genes (ARGs), namely sul1, ampC, ermB, mecA, as well as species-specific sequences, namely ecfX for Pseudomonas aeruginosa and enterococci-specific 23S rRNA, by graphene-based TiO2 composite photocatalysts under solar radiation, in real urban wastewaters. TiO2-reduced graphene oxide (TiO2-rGO) composite photocatalysts were synthesized by two ex-situ synthesis methods, namely hydrothermal (HD) treatment and photocatalytic (PH) treatment, starting from graphene oxide and Aeroxide P25 TiO2, and were characterized with various techniques, such as XRD, FT-IR, Raman, XPS, SEM and surface area (BET) analyses. The potential of the synthesized TiO2-rGO composites for the removal of the abovementioned antibiotic-related microcontaminants was compared to the efficiency shown by pristine Aeroxide P25 TiO2 under simulated solar radiation, in real urban wastewater effluents treated by a membrane bioreactor. The results showed that TiO2-rGO-PH was more efficient in the photocatalytic degradation of ERY (84 ± 2%) and CLA (86 ± 5%), while degradation of SMX (87 ± 4%) was found to be slightly higher with Aeroxide P25 TiO2. It was also demonstrated that more than 180 min of treatment were satisfactory for the complete inactivation and complete absence of post-treatment regrowth of E. coli bacteria (

Υπηρεσίες

Στατιστικά