Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Nesterov-based alternating optimization for nonnegative tensor factorization: algorithm and parallel implementation

Liavas Athanasios, Kostoulas Georgios, Lourakis Georgios, Huang Kejun, Sidiropoulos Nikolaos

Simple record


URIhttp://purl.tuc.gr/dl/dias/2D05F606-529A-4203-A0BB-2E97F3A568AD-
Identifierhttps://doi.org/10.1109/TSP.2017.2777399-
Identifierhttps://ieeexplore.ieee.org/document/8119874-
Languageen-
Extent10 pagesen
TitleNesterov-based alternating optimization for nonnegative tensor factorization: algorithm and parallel implementationen
CreatorLiavas Athanasiosen
CreatorΛιαβας Αθανασιοςel
CreatorKostoulas Georgiosen
CreatorΚωστουλας Γεωργιοςel
CreatorLourakis Georgiosen
CreatorΛουρακης Γεωργιοςel
CreatorHuang Kejunen
CreatorSidiropoulos Nikolaosen
CreatorΣιδηροπουλος Νικολαοςel
PublisherInstitute of Electrical and Electronics Engineersen
Content SummaryWe consider the problem of nonnegative tensor factorization. Our aim is to derive an efficient algorithm that is also suitable for parallel implementation. We adopt the alternating optimization framework and solve each matrix nonnegative least-squares problem via a Nesterov-Type algorithm for strongly convex problems. We describe a parallel implementation of the algorithm and measure the attained speedup in a multicore computing environment. It turns out that the derived algorithm is a competitive candidate for the solution of very large-scale dense nonnegative tensor factorization problems.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2019-09-27-
Date of Publication2018-
SubjectNonnegative tensor factorizationen
SubjectOptimal first-order optimization algorithmsen
SubjectParallel algorithmsen
SubjectTensorsen
Bibliographic CitationA.P. Liavas, G. Kostoulas, G. Lourakis, K. Huang and N.D. Sidiropoulos, "Nesterov-based alternating optimization for nonnegative tensor factorization: algorithm and parallel implementation," IEEE Trans. Signal Process., vol. 66, no. 4, pp. 944-953, Feb. 2018. doi: 10.1109/TSP.2017.2777399en

Services

Statistics