URI | http://purl.tuc.gr/dl/dias/60A01B35-E3F5-47F8-9CBF-6F1519266872 | - |
Αναγνωριστικό | https://doi.org/10.1109/TMM.2017.2713642 | - |
Αναγνωριστικό | https://ieeexplore.ieee.org/document/7944640 | - |
Γλώσσα | en | - |
Μέγεθος | 12 pages | en |
Τίτλος | H.264 and H.265 video bandwidth prediction | en |
Δημιουργός | Kalampogia Athina | en |
Δημιουργός | Καλαμπογια Αθηνα | el |
Δημιουργός | Koutsakis Polychronis | en |
Δημιουργός | Κουτσακης Πολυχρονης | el |
Εκδότης | Institute of Electrical and Electronics Engineers | en |
Περίληψη | The explosive growth of multimedia applications renders the efficiency of network resource allocation a problem of major importance. The burstiness of video traffic, in particular, calls for traffic control solutions that will help prevent significant packet losses. Such losses can lead to unacceptable quality of service (QoS) and quality of experience (QoE) to users. In this paper, we focus on a large variety of H.264-and H.265-encoded video traces with different GoP patterns. Different versions of each trace, in low, medium, and high quality have been used in our study.We evaluate the accuracy of an existing video traffic prediction approach for the size of B-frames, and we propose a new Markovian model that predicts B-frames' sizes with significantly higher accuracy. B-frame size prediction can be used in order to reduce bandwidth requirements and smooth the encoded video stream, by selective B-frame dropping, when the model predicts larger upcoming Bframe traffic than the network can handle. | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2019-10-18 | - |
Ημερομηνία Δημοσίευσης | 2018 | - |
Θεματική Κατηγορία | Bandwidth prediction | en |
Θεματική Κατηγορία | H.264, H.265 | en |
Θεματική Κατηγορία | Traffic modeling | en |
Θεματική Κατηγορία | Video streaming | en |
Βιβλιογραφική Αναφορά | A. Kalampogia and P. Koutsakis, "H.264 and H.265 video bandwidth prediction," IEEE Trans. Multimed., vol. 20, no. 1, pp. 171-182, Jan. 2018. doi: 10.1109/TMM.2017.2713642 | en |