Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

H.264 and H.265 video bandwidth prediction

Kalampogia Athina, Koutsakis Polychronis

Simple record


URIhttp://purl.tuc.gr/dl/dias/60A01B35-E3F5-47F8-9CBF-6F1519266872-
Identifierhttps://doi.org/10.1109/TMM.2017.2713642-
Identifierhttps://ieeexplore.ieee.org/document/7944640-
Languageen-
Extent12 pagesen
TitleH.264 and H.265 video bandwidth predictionen
CreatorKalampogia Athinaen
CreatorΚαλαμπογια Αθηναel
CreatorKoutsakis Polychronisen
CreatorΚουτσακης Πολυχρονηςel
PublisherInstitute of Electrical and Electronics Engineersen
Content SummaryThe explosive growth of multimedia applications renders the efficiency of network resource allocation a problem of major importance. The burstiness of video traffic, in particular, calls for traffic control solutions that will help prevent significant packet losses. Such losses can lead to unacceptable quality of service (QoS) and quality of experience (QoE) to users. In this paper, we focus on a large variety of H.264-and H.265-encoded video traces with different GoP patterns. Different versions of each trace, in low, medium, and high quality have been used in our study.We evaluate the accuracy of an existing video traffic prediction approach for the size of B-frames, and we propose a new Markovian model that predicts B-frames' sizes with significantly higher accuracy. B-frame size prediction can be used in order to reduce bandwidth requirements and smooth the encoded video stream, by selective B-frame dropping, when the model predicts larger upcoming Bframe traffic than the network can handle.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2019-10-18-
Date of Publication2018-
SubjectBandwidth predictionen
SubjectH.264, H.265en
SubjectTraffic modelingen
SubjectVideo streamingen
Bibliographic CitationA. Kalampogia and P. Koutsakis, "H.264 and H.265 video bandwidth prediction," IEEE Trans. Multimed., vol. 20, no. 1, pp. 171-182, Jan. 2018. doi: 10.1109/TMM.2017.2713642en

Services

Statistics