Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

A case study on the importance of belief state representation for dialogue policy management

Kotti Margarita, Diakoloukas Vasileios, Papangelis Alexandros, Lagoudakis Michail, Stylianou, Yannis

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/4C2EDC28-78AA-47F9-B6C9-B5A4BBA53422
Έτος 2018
Τύπος Πλήρης Δημοσίευση σε Συνέδριο
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά Μη διαθέσιμο για την επιλεγμένη γλώσσα
Εμφανίζεται στις Συλλογές

Περίληψη

A key component of task-oriented dialogue systems is the belief state representation, since it directly affects the policy learning efficiency. In this paper, we propose a novel, binary, compact, yet scalable belief state representation. We compare the standard verbose belief state representation (268 dimensions) with the domain-independent representation (57 dimensions) and the proposed representation (13 or 4 dimensions). To test those representations, the recently introduced Advantage Actor Critic (A2C) algorithm is exploited. The latter has not been tested before for any representation apart from the verbose one. We study the effect of the belief state representation within A2C under 0%, 15%, 30%, and 45% semantic error rate and conclude that the novel binary representation in general outperforms both the domain-independent and the verbose belief state representation. Further, the robustness of the binary representation is tested under more realistic scenarios with mismatched semantic error rates, within the A2C and DQN algorithms. The results indicate that the proposed compact, binary representation performs better or similarly to the other representations, being an efficient and promising alternative to the full belief.

Υπηρεσίες

Στατιστικά