Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Large Differentially Private Data Synthesis

Zacharioudakis Christos

Simple record


URIhttp://purl.tuc.gr/dl/dias/B3CEC19D-7593-4E6F-97EE-591C237D6B63-
Identifierhttps://doi.org/10.26233/heallink.tuc.84556-
Languageen-
Extent146 pagesen
TitleLarge Differentially Private Data Synthesisen
TitleΠαραγωγή δεδομένων μεγάλου όγκου με Διαφορική Ιδιωτικότηταel
CreatorZacharioudakis Christosen
CreatorΖαχαριουδακης Χρηστοςel
Contributor [Thesis Supervisor]Minos Garofalakisen
Contributor [Committee Member]Antonios Deligiannakisen
Contributor [Committee Member]Basilios Samoladasen
PublisherΠολυτεχνείο Κρήτηςel
PublisherTechnical University of Creteen
Academic UnitTechnical University of Crete::School of Electrical and Computer Engineeringen
Academic UnitΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστώνel
Content SummaryIn our days, data exists in abundance, it is ever increasing and it finds numerous uses. A most recent use is the training of Machine Learning models, software capable of making their own decisions. However, using data to train said models raises significant privacy concerns, especially when it comes to highly sensitive data such as medical records. A solution to this predicament is the synthetic data generation, the production of “fake” data that resembles the real one. However, synthetic data generation does not provide any privacy guarantees on its own. The need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. One such definition is Differential Privacy. This thesis attempts to combine the concept of Differential Privacy with various Machine Learning techniques to generate truly private data that can be utilized in place of the real one effectively. The Machine Learning models that will concern us are the Bayesian Networks and the Generative Adversarial Networks.en
Content SummaryΣτις μέρες μας, δεδομένα υπάρχουν σε αφθονία, αυξάνονται με ραγδαίους ρυθμούς και έχουν ποικίλες χρήσεις. Μια από τις πρόσφατες χρήσεις των δεδομένων είναι η εκπαίδευση μοντέλων Μηχανικής Μάθησης, λογισμικού με την δυνατότητα να λαμβάνει δικές του αποφάσεις. Ωστόσο, η χρήση δεδομένων για την εκπαίδευση των μοντέλων αυτών προκαλεί ανησυχίες σε ό,τι αφορά την ιδιωτικότητα των ατόμων, ειδικά όταν πρόκειται για πολύ ευαίσθητα δεδομένα όπως ιατρικά δεδομένα. Μια λύση στο πρόβλημα αυτό αποτελεί η παραγωγή συνθετικών δεδομένων, η δημιουργία ψεύτικων δεδομένων που αντιπροσωπεύουν όμως τα πραγματικά. Ωστόσο, η παραγωγή συνθετικών δεδομένων παρέχει ελάχιστες εγγυήσεις ιδιωτικότητας. Επομένως αυξάνεται η ανάγκη για έναν ισχυρό και μαθηματικά αυστηρό ορισμό της ιδιωτικότητας που συνοδεύεται από μια κλάση υπολογιστικά εκτελέσιμων αλγορίθμων. Ένας τέτοιος ορισμός είναι η Διαφορική Ιδιωτικότητα. Η εργασία αυτή αποσκοπεί στο να συνδυάσει την έννοια της Διαφορικής Ιδιωτικότητας με διάφορες τεχνικές Μηχανικής Μάθησης, ώστε να παραχθούν δεδομένα που είναι πραγματικά ιδιωτικά και μπορούν να χρησιμοποιηθούν αποτελεσματικά στην θέση των πραγματικών δεδομένων. Τα μοντέλα Μηχανικής Μάθησης που θα μας απασχολήσουν είναι τα Bayesian Networks και τα Generative Adversarial Networks.el
Type of ItemΔιπλωματική Εργασίαel
Type of ItemDiploma Worken
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2020-02-17-
Date of Publication2020-
SubjectMachine learningen
SubjectDifferential privacyen
SubjectData synthesisen
Bibliographic CitationZacharioudakis Christos, "Large Differentially Private Data Synthesis", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2020en
Bibliographic CitationΧρήστος Ζαχαριουδάκης, "Παραγωγή δεδομένων μεγάλου όγκου με Διαφορική Ιδιωτικότητα", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2020el

Available Files

Services

Statistics