Institutional Repository
Technical University of Crete
EN  |  EL



My Space

A framework for the Real-Time execution of cellular automata on reconfigurable logic

Kyparissas Nikolaos

Full record

Year 2020
Type of Item Diploma Work
Bibliographic Citation Nikolaos Kyparissas, "A framework for the Real-Time execution of cellular automata on reconfigurable logic", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2020
Appears in Collections
Relations with other Items


Cellular automata are discrete mathematical models discovered in the 1940s by John von Neumann and Stanislaw Ulam. They constitute a general paradigm for massively parallel computation. Through time, these powerful mathematical tools have been proven useful in a variety of scientific fields. In this thesis we propose a customizable parallel framework on reconfigurable logic which can be used to efficiently simulate weighted, large-neighborhood totalistic and outer-totalistic cellular automata in real time. Simulating cellular automata rules with large neighborhood sizes on large grids provides a new aspect of modeling physical processes with realistic features and results. In terms of performance results, our pipelined application-specific architecture successfully surpasses the computation and memory bounds found in a general-purpose CPU and has a measured speedup of up to 51x against an Intel Core i7-7700HQ CPU running highly optimized software programmed in C.

Available Files