Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Πρόβλεψη ελπιδοφόρων βιολογικών προσομοιώσεων στο εργαλείο PhysiBoSS

Anesti Effrosyni

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/5735281B-B012-4329-A4EE-6BD07DFC7464
Έτος 2020
Τύπος Διπλωματική Εργασία
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά Ευφροσύνη Ανέστη, "Πρόβλεψη ελπιδοφόρων βιολογικών προσομοιώσεων στο εργαλείο PhysiBoSS", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2020 https://doi.org/10.26233/heallink.tuc.84787
Εμφανίζεται στις Συλλογές

Περίληψη

Το γεγονός ότι η ύπαρξη βιολογικών πολυκύτταρων συστημάτων χαρακτηρίζεται από υψηλή πολυπλοκότητα και ετερογένεια, σε συνδυασμό με τη σημαντική εξέλιξη της επιστήμης των υπολογιστών, οδήγησαν στην αυξημένη χρήση των in-silico μεθόδων, βασισμένων σε μαθηματικά μοντέλα. Συγκεκριμένα, είναι ιδιαίτερα χρήσιμα όταν πρόκειται να μιλήσουμε για ασθένειες με μη φυσιολογική και απρόβλεπτη απόκριση, όπως είναι ο καρκίνος ή τα αυτό-άνοσα νοσήματα. Η ανάγκη για την κατανόηση και θεραπεία τέτοιου είδους ασθενειών, οδήγησε στη δημιουργία διαφορετικών μοντελοποιημένων εργαλείων, τα οποία συνυπολογίζουν το ενδο- και εξω-κυτταρικό περιβάλλον, καθώς και την αλληλεπίδραση μεταξύ των κυττάρων.Ένα τέτοιο παράδειγμα είναι το PhysiBoSS, το οποίο συνδυάζει δύο (2) άλλα ήδη σαφώς ορισμένα εργαλεία, για να υποστηρίξει την όλη λειτουργικότητά του και να παράξει τελικά, ένα μοντέλο απόφασης περί κυτταρικής μοίρας μέσω μίας ακριβής αναπαράστασης της μεταβολής του πληθυσμού των κυττάρων στο διάστημα του χρόνου, υπό ορισμένες συνθήκες και θεραπεία.Λαμβάνοντας υπόψιν το γεγονός ότι δεν είναι ελπιδοφόρες όλες οι προσομοιώσεις του εργαλείου, προκειμένου να διευκολύνουμε τη διαδικασία της διαλογής και μελέτης των αποτελεσμάτων, οι κακές προσομοιώσεις πρέπει να εξαιρεθούν.Επομένως, ο στόχος της παρούσας διπλωματικής είναι η σχεδίαση ενός παράλληλου και κατανεμημένου συστήματος, το οποίο εφαρμόζει έναν αλγόριθμο πρόβλεψης σε ένα μεγάλο πλήθος τρεχουσών προσομοιώσεων και αποφασίζει για τη συνέχιση ή όχι της εκτέλεσής της και τέλος ανιχνεύει και κρατά μόνο τις k πιο ελπιδοφόρες εκ του ομαδοποιημένου συνόλου προσομοιώσεων.Κλείνοντας, η απόδοση του αλγορίθμου ελέγχθηκε τοπικά και απομακρυσμένα, επιφέροντας θετικά αποτελέσματα.

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά