Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Realified L1-PCA for direction-of-arrival estimation: theory and algorithms

Markopoulos, Panos, Tsagkarakis Nicholas, Pados Dimitris A., Karystinos Georgios

Simple record


URIhttp://purl.tuc.gr/dl/dias/2165F4BF-BC5E-4654-868A-7DCADA560F6B-
Identifierhttps://doi.org/10.1186/s13634-019-0625-5-
Identifierhttps://link.springer.com/article/10.1186/s13634-019-0625-5-
Languageen-
Extent16 pagesen
TitleRealified L1-PCA for direction-of-arrival estimation: theory and algorithmsen
CreatorMarkopoulos, Panosen
CreatorTsagkarakis Nicholasen
CreatorPados Dimitris A.en
CreatorKarystinos Georgiosen
CreatorΚαρυστινος Γεωργιοςel
PublisherSpringeren
Content SummarySubspace-based direction-of-arrival (DoA) estimation commonly relies on the Principal-Component Analysis (PCA) of the sensor-array recorded snapshots. Therefore, it naturally inherits the sensitivity of PCA against outliers that may exist among the collected snapshots (e.g., due to unexpected directional jamming). In this work, we present DoA-estimation based on outlier-resistant L1-norm principal component analysis (L1-PCA) of the realified snapshots and a complete algorithmic/theoretical framework for L1-PCA of complex data through realification. Our numerical studies illustrate that the proposed DoA estimation method exhibits (i) similar performance to the conventional L2-PCA-based method, when the processed snapshots are nominal/clean, and (ii) significantly superior performance when the snapshots are faulty/corrupted.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2020-04-03-
Date of Publication2019-
SubjectData contaminationen
SubjectDirection-of-arrival estimationen
SubjectFaulty measurementsen
SubjectL1 normen
SubjectL2 normen
SubjectMultiple signal classificationen
SubjectOutlier resistanceen
SubjectPrincipal-component analysisen
SubjectSingular-value decompositionen
SubjectSubspace data processingen
Bibliographic CitationP.P. Markopoulos, N. Tsagkarakis, D.A. Pados and G.N. Karystinos, "Realified L1-PCA for direction-of-arrival estimation: theory and algorithms," EURASIP J. Adv. Signal Process., vol. 2019, no. 1, Dec. 2019. doi: 10.1186/s13634-019-0625-5en

Available Files

Services

Statistics