Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Bioelectrochemical treatment of groundwater containing BTEX in a continuous-flow system: substrate interactions, microbial community analysis, and impact of sulfate as a co-contaminant

Palma Enza, Espinoza Tofalos Anna, Daghio Matteo, Franzetti Andrea, Tsiota Panagiota, Cruz Viggi Carolina, Aulenta Federico, Petrangeli Papini Marco

Simple record


URIhttp://purl.tuc.gr/dl/dias/A0C2AF77-A939-4B6A-B168-40B56D1A2604-
Identifierhttps://doi.org/10.1016/j.nbt.2019.06.004-
Identifierhttps://www.sciencedirect.com/science/article/pii/S1871678418318880-
Languageen-
Extent8 pagesen
TitleBioelectrochemical treatment of groundwater containing BTEX in a continuous-flow system: substrate interactions, microbial community analysis, and impact of sulfate as a co-contaminanten
CreatorPalma Enzaen
CreatorEspinoza Tofalos Annaen
CreatorDaghio Matteoen
CreatorFranzetti Andreaen
CreatorTsiota Panagiotaen
CreatorΤσιωτα Παναγιωταel
CreatorCruz Viggi Carolinaen
CreatorAulenta Federicoen
CreatorPetrangeli Papini Marcoen
PublisherElsevieren
Content SummaryMicrobial electrochemical technologies (MET) are increasingly being considered for in situ remediation of contaminated groundwater. However, their application potential for the simultaneous treatment of complex mixtures of organic and inorganic contaminants, has been only marginally explored. Here we have analyzed the performance of the ‘bioelectric well’, a previously developed bioelectrochemical reactor configuration, in the treatment of benzene, toluene, ethyl-benzene and xylenes (BTEX) mixtures. Although to different extents, all BTEX were found to be degraded in the bioelectrochemical system, operated using a continuous-flow of groundwater at a hydraulic retention time of 8.8 h, with the graphite anode potentiostatically controlled at +0.200 V vs. the standard hydrogen electrode. In the case of toluene and ethyl-benzene, biodegradation was further confirmed by the GC–MS identification of fumarate-addition metabolites, previously shown to be involved in the activation of these contaminants under anaerobic conditions. Degradation rates were higher for toluene (31.3 ± 1.5 mg/L d) and lower for benzene (6.1 ± 0.3 mg/L d), ethyl-benzene (3.3 ± 0.1 mg/L d), and xylenes (4.5 ± 0.2 mg/L d). BTEX degradation was linked to electric current generation, with coulombic efficiencies falling in the range 53–69%, although methanogenesis also contributed to contaminant degradation. Remarkably, the system also allowed removal of sulfate simultaneously with toluene. Sulfate removal was likely driven by the hydrogen abiotically generated at the cathode. Taken as a whole, these findings highlight the remarkable potential of this innovative reactor configuration for application in a variety of contamination scenarios.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2020-04-06-
Date of Publication2019-
SubjectBTEXen
SubjectGeobacteren
SubjectMicrobial electrochemical technologiesen
SubjectSulfateen
Bibliographic CitationE. Palma, A. Espinoza Tofalos, M. Daghio, A. Franzetti, P. Tsiota, C. Cruz Viggi, M.P. Papini and F. Aulenta, "Bioelectrochemical treatment of groundwater containing BTEX in a continuous-flow system: substrate interactions, microbial community analysis, and impact of sulfate as a co-contaminant," New Biotechnol., vol. 53, pp. 41-48, Nov. 2019. doi: 10.1016/j.nbt.2019.06.004en

Services

Statistics