Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Automatic absence seizure detection evaluating matching pursuit features of EEG signals

Giannakaki Aikaterini-Antonia, Giannakakis Georgios, Vorgia Pelagia, Klados Manousos A., Zervakis Michail

Full record


URI: http://purl.tuc.gr/dl/dias/531B8930-A4F4-4E58-AA38-8F1C1184A9C9
Year 2019
Type of Item Conference Full Paper
License
Details
Bibliographic Citation K. Giannakaki, G. Giannakakis, P. Vorgia, M. Klados and M. Zervakis, "Automatic absence seizure detection evaluating matching pursuit features of EEG signals," in 19th International Conference on Bioinformatics and Bioengineering, 2019, pp. 886-889. doi: 10.1109/BIBE.2019.00165 https://doi.org/10.1109/BIBE.2019.00165
Appears in Collections

Summary

This paper evaluates the usage of matching pursuit (MP) features of electroencephalographic (EEG) signals and classification techniques on automatic absence seizure detection. Absence epileptic seizures are neurological disorders which are manifested as abnormal EEG patterns. Matching pursuit algorithm is able to decompose a signal into components with specific time-frequency characteristics. It is a robust technique especially when there is complex, multicomponent signal. In the present study, a clinical dataset containing 40 annotated absence seizures in long-term EEG recordings from pediatric epileptic patients (with age 6.0±2.9 years) was analyzed. The extracted MP features fed an automatic classification schema which achieved a time window based discrimination accuracy of 98.5%. As indicated by the study's results, the proposed features and analysis methods can be a promising addition to the area of automatic absence seizures detection.

Services

Statistics