Institutional Repository
Technical University of Crete
EN  |  EL



My Space

Outdoors mobile augmented reality for coastal erosion visualization based on geographical data

Katsiokalis Minas

Full record

Year 2020
Type of Item Diploma Work
Bibliographic Citation Minas Katsiokalis, "Outdoors mobile augmented reality for coastal erosion visualization based on geographical data", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2020
Appears in Collections


In this thesis we present a mobile augmented reality application for coastal erosion visualization based on geographical data, at the beach of Georgioupoli in Chania. The main focus of this work is to provide a mean for the 3D on-site visualization of the future state of the beach and increase the awareness of the public audience about the coastal erosion effect that takes place in many coastal areas of the Crete island. In this application we feature two future scenarios in three different locations of the beach. The first scenario is showing the beach under 3.6 meters retreat inland and the second scenario showing the beach under 7.7 meters retreat inland. Both scenarios correspond to the tendency of the beach after the minimum and maximum sea level rise expectation (SLR) in a time interval of 80 years. Advances in mobile technology have brought Augmented Reality to the wider public by utilizing the camera, GPS and inertial sensors present in modern smartphones. Upon visiting these locations a virtual scene is matched to the user's position and after a short process the user can experience the visualization. Position tracking is performed by utilizing the phone’s GPS and the computer vision capabilities of the chosen AR framework. A location aware experience was designed and integrated to ensure the loading of the right content at each location, avoiding unnecessary rendering of graphics and ensuring user is located in the area of Georgioupoli. The application provides a map which can be used to notify the user about the locations of interest as well as to get directions and visit whichever he/she desires. The application makes use of modern AR frameworks and rendering methods for mobile AR development. By combining AR technologies with geo-spatial data we aim to enhance user's understanding of those data and increase people's knowledge on crucial environmental phenomena like coastal erosion, focusing on a high risk area such as Georgioupoli.

Available Files