URI | http://purl.tuc.gr/dl/dias/3B7A50A5-E90B-4B1C-AFD3-BCE5BD2DC834 | - |
Identifier | https://doi.org/10.26233/heallink.tuc.85602 | - |
Language | en | - |
Extent | 65 pages | en |
Title | Design and implementation of a distributed synopsis data engine on Apache Flink | en |
Title | Σχεδίαση και υλοποίηση ενός κατανεμημένου συστήματος συνόψεων στο Apache Flink | el |
Creator | Kontaxakis Antonios | en |
Creator | Κονταξακης Αντωνιος | el |
Contributor [Committee Member] | Garofalakis Minos | en |
Contributor [Committee Member] | Γαροφαλακης Μινως | el |
Contributor [Thesis Supervisor] | Deligiannakis Antonios | en |
Contributor [Thesis Supervisor] | Δεληγιαννακης Αντωνιος | el |
Contributor [Committee Member] | Samoladas Vasilis | en |
Contributor [Committee Member] | Σαμολαδας Βασιλης | el |
Publisher | Πολυτεχνείο Κρήτης | el |
Publisher | Technical University of Crete | en |
Academic Unit | Technical University of Crete::School of Electrical and Computer Engineering | en |
Academic Unit | Πολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών | el |
Content Summary | This work, it details the design and structure of a Synopses Data Engine (SDE) which combines the virtues of parallel processing and stream summarization towards delivering interactive analytics at extreme scale. The SDE is built on top of Apache Flink and implements a synopsis-as-a-service paradigm. In that it achieves (a) concurrently maintaining thousands of synopses of various types for thousands of streams on demand, (b) reusing maintained synopses among various concurrent workflows, (c) providing data summarization facilities even for cross-(Big Data) platform workflows, (d) pluggability of new synopses on-the-fly, (e) increased potential for workflow execution optimization. The proposed SDE is useful for interactive analytics at extreme scales because it enables (i) enhanced horizontal scalability, i.e., not only scaling out the computation to a number of processing units available in a computer cluster, but also harnessing the processing load assigned to each by operating on carefully-crafted data summaries, (ii) vertical scalability, i.e., scaling the computation to very high numbers of processed streams and (iii) federated scalability i.e., scaling the computation beyond single clusters and clouds by controlling the communication required to answer global queries posed over a number of potentially geo-dispersed clusters. | en |
Type of Item | Μεταπτυχιακή Διατριβή | el |
Type of Item | Master Thesis | en |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2020-05-29 | - |
Date of Publication | 2020 | - |
Subject | Data stream management | en |
Bibliographic Citation | Antonios Kontaxakis, "Design and implementation of a distributed synopsis data engine on Apache Flink", Master Thesis, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2020 | en |
Bibliographic Citation | Αντώνιος Κονταξάκης, "Σχεδίαση και υλοποίηση ενός κατανεμημένου συστήματος συνόψεων στο Apache Flink", Μεταπτυχιακή Διατριβή, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2020 | el |