Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

HVAC optimization genetic algorithm for industrial near-zero-energy building demand response

Kampelis Nikolaos, Sifakis Nikolaos, Kolokotsa Dionysia, Gobakis Konstantinos, Kalaitzakis Konstantinos, Isidori Daniela, Cristalli Cristina

Simple record


URIhttp://purl.tuc.gr/dl/dias/CB77DE20-0789-4E76-A4CF-DDF4ED0F83C4-
Identifierhttps://doi.org/10.3390/en12112177-
Identifierhttps://www.mdpi.com/1996-1073/12/11/2177-
Languageen-
Extent23 pagesen
TitleHVAC optimization genetic algorithm for industrial near-zero-energy building demand responseen
CreatorKampelis Nikolaosen
CreatorΚαμπελης Νικολαοςel
CreatorSifakis Nikolaosen
CreatorΣηφακης Νικολαοςel
CreatorKolokotsa Dionysiaen
CreatorΚολοκοτσα Διονυσιαel
CreatorGobakis Konstantinosen
CreatorΓομπακης Κωνσταντινοςel
CreatorKalaitzakis Konstantinosen
CreatorΚαλαϊτζακης Κωνσταντινοςel
CreatorIsidori Danielaen
CreatorCristalli Cristinaen
PublisherMDPIen
Content SummaryDemand response offers the possibility of altering the profile of power consumption of individual buildings or building districts, i.e., microgrids, for economic return. There is significant potential of demand response in enabling flexibility via advanced grid management options, allowing higher renewable energy penetration and efficient exploitation of resources. Demand response and distributed energy resource dynamic management are gradually gaining importance as valuable assets for managing peak loads, grid balance, renewable energy source intermittency, and energy losses. In this paper, the potential for operational optimization of a heating, ventilation, and air conditioning (HVAC) system in a smart near-zero-energy industrial building is investigated with the aid of a genetic algorithm. The analysis involves a validated building energy model, a model of energy cost, and an optimization model for establishing HVAC optimum temperature set points. Optimization aims at establishing the trade-off between the minimum daily cost of energy and thermal comfort. Predicted mean vote is integrated in the objective function to ensure thermal comfort requirements are met.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2020-06-01-
Date of Publication2019-
SubjectDemand responseen
SubjectGenetic algorithmen
SubjectHVAC optimizationen
SubjectNear-zero-energy buildingen
Bibliographic CitationN. Kampelis, N. Sifakis, D. Kolokotsa, K. Gobakis, K. Kalaitzakis, D. Isidori and C. Cristalli, "HVAC optimization genetic algorithm for industrial near-zero-energy building demand response," Energies, vol. 12, no. 11, Jun. 2019. doi: 10.3390/en12112177en

Available Files

Services

Statistics