Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Energy efficient production of glass-ceramics using photovoltaic (P/V) glass and lignite fly ash

Savvilotidou Vasiliki, Kritikaki Anna, Stratakis Antonios, Komnitsas Konstantinos, Gidarakos Evaggelos

Simple record


URIhttp://purl.tuc.gr/dl/dias/A1DB3550-A45D-4E8E-AF59-DF1D6DA4A6B7-
Identifierhttps://doi.org/10.1016/j.wasman.2019.04.022-
Identifierhttps://www.sciencedirect.com/science/article/pii/S0956053X19302338-
Languageen-
Extent13 pagesen
TitleEnergy efficient production of glass-ceramics using photovoltaic (P/V) glass and lignite fly ashen
CreatorSavvilotidou Vasilikien
CreatorΣαββιλωτιδου Βασιλικηel
CreatorKritikaki Annaen
CreatorΚρητικακη Ανναel
CreatorStratakis Antoniosen
CreatorΣτρατακης Αντωνιοςel
CreatorKomnitsas Konstantinosen
CreatorΚομνιτσας Κωνσταντινοςel
CreatorGidarakos Evaggelosen
CreatorΓιδαρακος Ευαγγελοςel
PublisherElsevieren
Content SummaryThis study investigates an innovative approach for the valorization of specific wastes generated from the energy sector and the production of glass-ceramics. The wastes used were photovoltaic (P/V) glass, produced from the renewable energy sector, and lignite fly ash, produced from the conventional energy sector. The process first involved the production of glass after melting specific mixtures of wastes, namely (i) 70% P/V glass and 30% lignite fly ash, and (ii) 80% P/V glass and 20% lignite fly ash, at 1200 °C for 1 h as revealed by the use of a heating microscope. The results indicated that the P/V glass, as a sodium-potassium-rich inorganic waste, reduces energy requirements of the melting process. The produced glass was then used for the production of glass-ceramics. Dense and homogeneous glass-ceramics, exhibiting high chemical stability and no toxicity, were produced after controlled thermal treatment of glass at 800 °C. The mechanical (compressive strength, Vickers hardness) and physical (open porosity, bulk density and water absorption) properties of the produced glass-ceramics were evaluated. X-ray diffraction (XRD) and Energy Dispersive X-ray fluorescence (ED-XRF) were used for the characterization of the raw materials and the produced glass-ceramics. Scanning electron microscopy (SEM) provided further insights on the microstructure of the final products. The properties of the produced glass-ceramics, namely water absorption and compressive strength, render them suitable for applications in the construction industry. The waste valorization approach followed in this study is in line with the principles of circular economy.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2020-06-10-
Date of Publication2019-
SubjectLignite fly ashen
SubjectMechanical propertiesen
SubjectPhysical propertiesen
SubjectSinteringen
SubjectWaste P/V glassen
Bibliographic CitationV. Savvilotidou, A. Kritikaki, A. Stratakis, K. Komnitsas and E. Gidarakos, "Energy efficient production of glass-ceramics using photovoltaic (P/V) glass and lignite fly ash," Waste Manage., vol. 90, pp. 46-58, May 2019. doi: 10.1016/j.wasman.2019.04.022en

Services

Statistics