Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Updating the role of reduced graphene oxide ink on field emission devices in synergy with charge transfer materials

Stylianakis Minas M., Viskadouros Georgios, Polyzoidis Christos, Veisakis George, Kenanakis Georgios, Kornilios Nikolaos I., Petridis Konstantinos, Kymakis, Emmanuel

Simple record


URIhttp://purl.tuc.gr/dl/dias/C609157D-1439-48AB-9ABE-A76BAD98DAC1-
Identifierhttps://doi.org/10.3390/nano9020137-
Identifierhttps://www.mdpi.com/2079-4991/9/2/137-
Languageen-
Extent15 pagesen
TitleUpdating the role of reduced graphene oxide ink on field emission devices in synergy with charge transfer materialsen
CreatorStylianakis Minas M.en
CreatorViskadouros Georgiosen
CreatorΒισκαδουρος Γεωργιοςel
CreatorPolyzoidis Christosen
CreatorVeisakis Georgeen
CreatorKenanakis Georgiosen
CreatorKornilios Nikolaos I.en
CreatorPetridis Konstantinosen
CreatorKymakis, Emmanuelen
PublisherMDPIen
Content SummaryHydroiodic acid (HI)-treated reduced graphene oxide (rGO) ink/conductive polymeric composites are considered as promising cold cathodes in terms of high geometrical aspect ratio and low field emission (FE) threshold devices. In this study, four simple, cost-effective, solution-processed approaches for rGO-based field effect emitters were developed, optimized, and compared; rGO layers were coated on (a) n+ doped Si substrate, (b) n + -Si/P3HT:rGO, (c) n + -Si/PCDTBT:rGO, and (d) n + -Si/PCDTBT:PC 71 BM:rGO composites, respectively. The fabricated emitters were optimized by tailoring the concentration ratios of their preparation and field emission characteristics. In a critical composite ratio, FE performance was remarkably improved compared to the pristine Si, as well as n + -Si/rGO field emitter. In this context, the impact of various materials, such as polymers, fullerene derivatives, as well as different solvents on rGO function reinforcement and consequently on FE performance upon rGO-based composites preparation was investigated. The field emitter consisted of n + -Si/PCDTBT:PC 71 BM(80%):rGO(20%)/rGO displayed a field enhancement factor of ~2850, with remarkable stability over 20 h and low turn-on field in 0.6 V/µm. High-efficiency graphene-based FE devices realization paves the way towards low-cost, large-scale electron sources development. Finally, the contribution of this hierarchical, composite film morphology was evaluated and discussed.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2020-09-08-
Date of Publication2019-
SubjectCold cathodeen
SubjectField emissionen
SubjectFowler-nordheimen
SubjectGrapheneen
SubjectGraphene inken
SubjectPolymer compositesen
SubjectReduced graphene oxideen
Bibliographic CitationM.M. Stylianakis, G. Viskadouros, C. Polyzoidis, G. Veisakis, G. Kenanakis, N. Kornilios, K. Petridis and E. Kymakis, "Updating the role of reduced graphene oxide ink on field emission devices in synergy with charge transfer materials," Nanomaterials, vol. 9, no. 2, Feb. 2019. doi: 10.3390/nano9020137en

Available Files

Services

Statistics