Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Αλγόριθμοι μηχανικής μάθησης για την προσέλκυση πελατών: μια συγκριτική αξιολόγηση στο χώρο των τραπεζικών υπηρεσιών

Tavernaraki Maria-Zouzanna

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/AB63FE3E-E1BC-47F3-8D64-E5F4698C8D11-
Αναγνωριστικόhttps://doi.org/10.26233/heallink.tuc.86873-
Γλώσσαel-
Μέγεθος57 σελίδεςel
Μέγεθος523.8 kilobytesen
ΤίτλοςΑλγόριθμοι μηχανικής μάθησης για την προσέλκυση πελατών: μια συγκριτική αξιολόγηση στο χώρο των τραπεζικών υπηρεσιώνel
ΤίτλοςMachine learning algorithms for customer acquisition: a comparative evaluation in banking servicesen
ΔημιουργόςTavernaraki Maria-Zouzannaen
ΔημιουργόςΤαβερναρακη Μαρια-Ζουζανναel
Συντελεστής [Επιβλέπων Καθηγητής]Doumpos Michailen
Συντελεστής [Επιβλέπων Καθηγητής]Δουμπος Μιχαηλel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Zopounidis Konstantinosen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Ζοπουνιδης Κωνσταντινοςel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Atsalakis Georgiosen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Ατσαλακης Γεωργιοςel
ΕκδότηςΠολυτεχνείο Κρήτηςel
ΕκδότηςTechnical University of Creteen
Ακαδημαϊκή ΜονάδαTechnical University of Crete::School of Production Engineering and Managementen
Ακαδημαϊκή ΜονάδαΠολυτεχνείο Κρήτης::Σχολή Μηχανικών Παραγωγής και Διοίκησηςel
ΠερίληψηΗ γνώση των πελατών που διαθέτει μια τράπεζα και κατ’ επέκταση κάθε επιχείρηση, είναι σημαντικό βήμα προκειμένου να είναι σε θέση να προβλέψει τη καταναλωτική συμπεριφορά των πελατών που θέλει να προσελκύσει. Δηλαδή, γνωρίζοντας το τρόπο επιλογής προϊόντων και υπηρεσιών που κατέχουν οι πελάτες της είναι δυνατόν να γίνει πρόβλεψη και άλλων με παρόμοια συμπεριφορά. Από τις πλέον διαδεδομένες μεθόδους που χρησιμοποιούν οι επιχειρήσεις για το σκοπό αυτό είναι η χρήση αλγορίθμων μηχανικής μάθησης. Σκοπός είναι η καθοδήγηση του αναγνώστη μέσω της ανάλυσης της αξίας των πελατειακών σχέσεων κ της καθοριστικής συμβολής των εργαλείων και τεχνικών εξόρυξης δεδομένων στην εφαρμογή των αλγορίθμων μηχανικής μάθησης. Η εφαρμογή των αλγορίθμων αφορά την εύρεση των τραπεζικών προϊόντων μιας Ισπανικής τράπεζας που είναι πιο πιθανόν να αγορασθούν και από ποιους πελάτες βάσει της καταναλωτικής συμπεριφοράς των ίδιων αλλά και των πελατών που ήδη έχουν αγοράσει αυτά τα προϊόντα. Για την επίλυση του προβλήματος χρησιμοποιήθηκαν μοντέλα ταξινόμησης, τα οποία εκτελέσθηκαν μέσω του προγράμματος R. Οι μέθοδοι που χρησιμοποιήθηκαν είναι: Λογιστική Παλινδρόμηση, Δέντρα λήψης αποφάσεων ενίσχυσης κλίσης, Δέντρα ταξινόμησης και παλινδρόμησης, Ενισχυμένη Λογιστική Παλινδρόμηση και Νευρωνικά δίκτυα. Στη συνέχεια έγινε η αξιολόγηση των μοντέλων που δημιουργήθηκαν από τους παραπάνω αλγορίθμους μέσω του δείκτη AUROC και πραγματοποιήθηκε η κατάταξη τους βάσει της απόδοσης τους. Για κάθε μοντέλο έγινε υπολογισμός της σημαντικότητας των μεταβλητών που χρησιμοποιήθηκαν για να εξαχθούν τα αποτελέσματα.el
ΠερίληψηThe knowledge of the customers that a bank and every business possess is an important step in order to be able to predict the customers behavior that it wants to attract. Knowing the preferences of customers, it is possible to predict the preferences of others with similar behavior. One of the most common methods used by companies for this purpose is the use of machine learning algorithms. The purpose is to guide the reader through the analysis of the value of customer relationships and the crucial contribution of data mining tools and techniques to the application of machine learning algorithms. The algorithms try to find the banking products of a Spanish bank that are more likely to be bought and by which customers based on the consumers behavior and the behavior of others that already bought these products. To solve the problem, classification models were used which were executed through the R program. The methods used are: Logistic Regression, Extreme Gradient Boosting, Classification and Regression Trees, Boosted Logistic Regression and Neural Networks. Finally, the models created were evaluated through the AUROC index and their classification was performed based on their performance. For each model, the significance of the variables used to extract the results was calculated.en
ΤύποςΔιπλωματική Εργασίαel
ΤύποςDiploma Worken
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2020-10-06-
Ημερομηνία Δημοσίευσης2020-
Θεματική ΚατηγορίαΑλγόριθμοι Μηχανικής Μάθησηςel
Θεματική ΚατηγορίαΤραπεζικά προϊόνταel
Θεματική ΚατηγορίαData miningen
Θεματική ΚατηγορίαMachine learningen
Βιβλιογραφική ΑναφοράΜαρία-Ζουζάννα Ταβερναράκη, "Αλγόριθμοι μηχανικής μάθησης για την προσέλκυση πελατών: μια συγκριτική αξιολόγηση στο χώρο των τραπεζικών υπηρεσιών", Διπλωματική Εργασία, Σχολή Μηχανικών Παραγωγής και Διοίκησης, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2020el
Βιβλιογραφική ΑναφοράMaria-Zouzanna Tavernaraki, "Machine learning algorithms for customer acquisition: a comparative evaluation in banking services", Diploma Work, School of Production Engineering and Management, Technical University of Crete, Chania, Greece, 2020en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά