Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Influence of state-variable constraints on partially observable Monte Carlo planning

Castellini Alberto, Chalkiadakis Georgios, Farinelli Alessandro

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/CC802758-9A21-4D99-A2B7-E8EF862C8D47-
Αναγνωριστικόhttps://doi.org/10.24963/ijcai.2019/769-
Αναγνωριστικόhttps://www.ijcai.org/Proceedings/2019/769-
Γλώσσαen-
Μέγεθος7 pagesen
ΤίτλοςInfluence of state-variable constraints on partially observable Monte Carlo planningen
ΔημιουργόςCastellini Albertoen
ΔημιουργόςChalkiadakis Georgiosen
ΔημιουργόςΧαλκιαδακης Γεωργιοςel
ΔημιουργόςFarinelli Alessandroen
ΕκδότηςInternational Joint Conferences on Artificial Intelligenceen
ΠερίληψηOnline planning methods for partially observable Markov decision processes (POMDPs) have recently gained much interest. In this paper, we propose the introduction of prior knowledge in the form of (probabilistic) relationships among discrete state-variables, for online planning based on the well-known POMCP algorithm. In particular, we propose the use of hard constraint networks and probabilistic Markov random fields to formalize state-variable constraints and we extend the POMCP algorithm to take advantage of these constraints. Results on a case study based on Rocksample show that the usage of this knowledge provides significant improvements to the performance of the algorithm. The extent of this improvement depends on the amount of knowledge encoded in the constraints and reaches the 50% of the average discounted return in the most favorable cases that we analyzed.en
ΤύποςΠλήρης Δημοσίευση σε Συνέδριοel
ΤύποςConference Full Paperen
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2020-10-29-
Ημερομηνία Δημοσίευσης2019-
Θεματική ΚατηγορίαMarkov decision processesen
Θεματική ΚατηγορίαPOMCPen
Θεματική ΚατηγορίαOnline planning methodsen
Βιβλιογραφική ΑναφοράA. Castellini, G. Chalkiadakis and A. Farinelli, "Influence of state-variable constraints on partially observable Monte Carlo planning," in 28th International Joint Conference on Artificial Intelligence, 2019, pp. 5540-5546. doi: 10.24963/ijcai.2019/769en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά