URI | http://purl.tuc.gr/dl/dias/E5330C0A-6A2F-471E-8EA4-DFCEFA845A0A | - |
Αναγνωριστικό | https://doi.org/10.1088/1751-8121/ab0313 | - |
Αναγνωριστικό | https://iopscience.iop.org/article/10.1088/1751-8121/ab0313 | - |
Γλώσσα | en | - |
Μέγεθος | 12 pages | en |
Τίτλος | Quantum channel simulation of phylogenetic branching models | en |
Δημιουργός | Ellinas Dimosthenis | en |
Δημιουργός | Ελληνας Δημοσθενης | el |
Δημιουργός | Jarvis Peter D. | en |
Εκδότης | IOP Publishing | en |
Περίληψη | Quantum channel simulations constructing probability tensors for biological multi-taxa in phylogenetics are proposed. These are given in terms of positive trace preserving maps (quantum channels), operating on quantum density matrices, using evolving systems of quantum walks with multiple walkers. Simulation of a variety of standard phylogenetic branching models, applying on trees of various topologies, is constructed using appropriate decoherent quantum circuits. For the sequences of biological characters so modelled, quantum simulations of statistical inference for them are constructed, given appropriate aligned molecular sequence data. This is achieved by the introduction of a quantum pruning map, operating on likelihood operator observables, utilizing state-observable duality and quantum measurement theory. More general stategies for related quantum simulation targets are also discussed. | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2020-10-29 | - |
Ημερομηνία Δημοσίευσης | 2019 | - |
Θεματική Κατηγορία | Mathematical phylogenetics | en |
Θεματική Κατηγορία | Open quantum systems | en |
Θεματική Κατηγορία | Quantum algorithms | en |
Θεματική Κατηγορία | Quantum biology | en |
Θεματική Κατηγορία | Quantum channels | en |
Θεματική Κατηγορία | Quantum walks | en |
Βιβλιογραφική Αναφορά | D. Ellinas and P.D. Jarvis, "Quantum channel simulation of phylogenetic branching models," J. Phys. A Math. Theor., vol. 52, no. 11, Feb. 2019. doi: 10.1088/1751-8121/ab0313 | en |