Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Quantum channel simulation of phylogenetic branching models

Ellinas Dimosthenis, Jarvis Peter D.

Simple record


URIhttp://purl.tuc.gr/dl/dias/E5330C0A-6A2F-471E-8EA4-DFCEFA845A0A-
Identifierhttps://doi.org/10.1088/1751-8121/ab0313-
Identifierhttps://iopscience.iop.org/article/10.1088/1751-8121/ab0313-
Languageen-
Extent12 pagesen
TitleQuantum channel simulation of phylogenetic branching modelsen
CreatorEllinas Dimosthenisen
CreatorΕλληνας Δημοσθενηςel
CreatorJarvis Peter D.en
PublisherIOP Publishingen
Content SummaryQuantum channel simulations constructing probability tensors for biological multi-taxa in phylogenetics are proposed. These are given in terms of positive trace preserving maps (quantum channels), operating on quantum density matrices, using evolving systems of quantum walks with multiple walkers. Simulation of a variety of standard phylogenetic branching models, applying on trees of various topologies, is constructed using appropriate decoherent quantum circuits. For the sequences of biological characters so modelled, quantum simulations of statistical inference for them are constructed, given appropriate aligned molecular sequence data. This is achieved by the introduction of a quantum pruning map, operating on likelihood operator observables, utilizing state-observable duality and quantum measurement theory. More general stategies for related quantum simulation targets are also discussed.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2020-10-29-
Date of Publication2019-
SubjectMathematical phylogeneticsen
SubjectOpen quantum systemsen
SubjectQuantum algorithmsen
SubjectQuantum biologyen
SubjectQuantum channelsen
SubjectQuantum walksen
Bibliographic CitationD. Ellinas and P.D. Jarvis, "Quantum channel simulation of phylogenetic branching models," J. Phys. A Math. Theor., vol. 52, no. 11, Feb. 2019. doi: 10.1088/1751-8121/ab0313en

Services

Statistics