URI | http://purl.tuc.gr/dl/dias/BCBDDCEA-3FEB-4C4E-A9F9-C0376F71F859 | - |
Αναγνωριστικό | https://doi.org/10.1007/978-3-030-30241-2_47 | - |
Αναγνωριστικό | https://link.springer.com/chapter/10.1007/978-3-030-30241-2_47 | - |
Γλώσσα | en | - |
Μέγεθος | 13 pages | en |
Τίτλος | A reinforcement learning approach to smart lane changes of self-driving cars | en |
Δημιουργός | Ye Fangmin | en |
Δημιουργός | Wang Long | en |
Δημιουργός | Wang Yibing | en |
Δημιουργός | Guo Jingqiu | en |
Δημιουργός | Papamichail Ioannis | en |
Δημιουργός | Παπαμιχαηλ Ιωαννης | el |
Δημιουργός | Papageorgiou Markos | en |
Δημιουργός | Παπαγεωργιου Μαρκος | el |
Εκδότης | Springer Nature | en |
Περίληψη | Lane changes are a vital part of vehicle motions on roads, affecting surrounding vehicles locally and traffic flow collectively. In the context of connected and automated vehicles (CAVs), this paper is concerned with the impacts of smart lane changes of CAVs on their own travel performance as well as on the entire traffic flow with the increase of the market penetration rate (MPR). On the basis of intensive microscopic traffic simulation and reinforcement learning technique, a selfish lane-changing strategy was first developed in this work to enable foresighted lane changing decisions for CAVs to improve their travel efficiency. The overall impacts of such smart lane changes on traffic flow of both CAVs and human-driven vehicles were then examined on the same simulation platform. It was found that smart lane changes were beneficial for both CAVs and the entire traffic flow, if MPR was not more than 60%. | en |
Τύπος | Κεφάλαιο σε Βιβλίο | el |
Τύπος | Book Chapter | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2020-11-02 | - |
Ημερομηνία Δημοσίευσης | 2019 | - |
Θεματική Κατηγορία | Connected and automated vehicles | en |
Θεματική Κατηγορία | Microscopic simulation | en |
Θεματική Κατηγορία | Q-learning | en |
Θεματική Κατηγορία | Smart lane changes | en |
Θεματική Κατηγορία | Traffic flow impacts | en |
Βιβλιογραφική Αναφορά | F. Ye, L. Wang, Y. Wang, J. Guo, I. Papamichail and M. Papageorgiou, "A reinforcement learning approach to smart lane changes of self-driving cars," in Progress in Artificial Intelligence. EPIA 2019, vol. 11804, Lecture Notes in Computer Science, O. P. Moura, P. Novais, L. Reis, Eds., Cham, Switzerland: Springer Nature, 2019, pp. 559-571. doi: 10.1007/978-3-030-30241-2_47 | en |
Τίτλος Βιβλίου | Progress in Artificial Intelligence. EPIA 2019 | en |
Σειρά Βιβλίου | Lecture Notes in Computer Science | en |