Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

GIS and remote sensing aided information for soil moisture estimation: a comparative study of interpolation techniques

Srivastava Prashant K., Pandey Prem Chandra, Petropoulos Georgios, Kourgialas Nektarios N., Pandey Varsha H.R., Singh Ujjwal

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/4AFECADE-8504-4392-9575-5F0EB8F73A9D-
Αναγνωριστικόhttps://doi.org/10.3390/resources8020070-
Αναγνωριστικόhttps://www.mdpi.com/2079-9276/8/2/70-
Γλώσσαen-
Μέγεθος17 pagesen
ΤίτλοςGIS and remote sensing aided information for soil moisture estimation: a comparative study of interpolation techniquesen
ΔημιουργόςSrivastava Prashant K.en
ΔημιουργόςPandey Prem Chandraen
ΔημιουργόςPetropoulos Georgiosen
ΔημιουργόςΠετροπουλος Γεωργιοςel
ΔημιουργόςKourgialas Nektarios N.en
ΔημιουργόςPandey Varsha H.R.en
ΔημιουργόςSingh Ujjwalen
ΕκδότηςMDPIen
ΠερίληψηSoil moisture represents a vital component of the ecosystem, sustaining life-supporting activities at micro and mega scales. It is a highly required parameter that may vary significantly both spatially and temporally. Due to this fact, its estimation is challenging and often hard to obtain especially over large, heterogeneous surfaces. This study aimed at comparing the performance of four widely used interpolation methods in estimating soil moisture using GPS-aided information and remote sensing. The DistanceWeighting (IDW), Spline, Ordinary Kriging models and Kriging with External Drift (KED) interpolation techniques were employed to estimate soil moisture using 82 soil moisture field-measured values. Of those measurements, data from 54 soil moisture locations were used for calibration and the remaining data for validation purposes. The study area selected was Varanasi City, India covering an area of 1535 km2. The soil moisture distribution results demonstrate the lowest RMSE (root mean square error, 8.69%) for KED, in comparison to the other approaches. For KED, the soil organic carbon information was incorporated as a secondary variable. The study results contribute towards efforts to overcome the issue of scarcity of soil moisture information at local and regional scales. It also provides an understandable method to generate and produce reliable spatial continuous datasets of this parameter, demonstrating the added value of geospatial analysis techniques for this purpose.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2020-11-03-
Ημερομηνία Δημοσίευσης2019-
Θεματική ΚατηγορίαGeographical information systemsen
Θεματική ΚατηγορίαGeoinformationen
Θεματική ΚατηγορίαMappingen
Θεματική ΚατηγορίαMonitoring soil moistureen
Θεματική ΚατηγορίαSoil water managementen
Θεματική ΚατηγορίαSpatial interpolationen
Βιβλιογραφική ΑναφοράP.K. Srivastava, P.C. Pandey, G.P. Petropoulos, N.N. Kourgialas, V. Pandey and U. Singh, "GIS and remote sensing aided information for soil moisture estimation: a comparative study of interpolation techniques," Resources, vol. 8, no. 2, Apr. 2019. doi: 10.3390/resources8020070en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά