Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Fuzzy self-tuning differential evolution for optimal product line design

Tsafarakis Stelios, Zervoudakis Konstantinos, Andronikidis Andreas, Altsitsiadis Efthymios

Simple record


URIhttp://purl.tuc.gr/dl/dias/359DD340-0F30-4B9D-9C2D-184A235EBE9B-
Identifierhttps://doi.org/10.1016/j.ejor.2020.05.018-
Identifierhttps://www.sciencedirect.com/science/article/pii/S037722172030446X-
Languageen-
Extent9 pagesen
Extent983 Kilobytesen
TitleFuzzy self-tuning differential evolution for optimal product line designen
CreatorTsafarakis Steliosen
CreatorΤσαφαρακης Στελιοςel
CreatorZervoudakis Konstantinosen
CreatorΖερβουδακης Κωνσταντινοςel
CreatorAndronikidis Andreasen
CreatorAltsitsiadis Efthymiosen
PublisherElsevieren
Content SummaryDesigning a successful product line is a critical decision for a firm to stay competitive. By offering a line of products, the manufacturer can maximize profits or market share through satisfying more consumers than a single product would. The optimal Product Line Design (PLD) problem is classified as NP-hard. This paper proposes a Fuzzy Self-Tuning Differential Evolution (FSTDE) for PLD, which exploits Fuzzy Logic to automatically calculate the parameters independently for each solution during the optimization, thus resulting to a settings-free version of DE. The proposed method is compared to the most successful mutation strategies of the algorithm as well as previous approaches to the PLD problem, like Genetic Algorithm and Simulated Annealing, using both actual and artificial data of consumer preferences. The comparison results demonstrate that FSTDE is an attractive alternative approach to the PLD problem.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2021-03-24-
Date of Publication2020-
SubjectOR in marketingen
SubjectProduct line designen
SubjectDifferential evolutionen
SubjectSelf-tuningen
SubjectFuzzy logicen
Bibliographic CitationS. Tsafarakis, K. Zervoudakis, A. Andronikidis and E. Altsitsiadis, "Fuzzy self-tuning differential evolution for optimal product line design", Eur. J. Oper. Res., vol. 287, no. 3, pp. 1161-1169, Dec. 2020. doi: 10.1016/j.ejor.2020.05.018.en

Services

Statistics