Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Predicting global patterns of long-term climate change from short-term simulations using machine learning

Mansfield Laura, Nowack Peer, Kasoar Matthew, Everitt Richard, Collins William, Voulgarakis Apostolos

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/8AFEFC3A-355D-47E5-B5B7-168942BC8F01-
Αναγνωριστικόhttps://doi.org/10.1038/s41612-020-00148-5-
Αναγνωριστικόhttps://www.nature.com/articles/s41612-020-00148-5-
Γλώσσαen-
ΤίτλοςPredicting global patterns of long-term climate change from short-term simulations using machine learningen
ΔημιουργόςMansfield Lauraen
ΔημιουργόςNowack Peeren
ΔημιουργόςKasoar Matthewen
ΔημιουργόςEveritt Richarden
ΔημιουργόςCollins Williamen
ΔημιουργόςVoulgarakis Apostolosen
ΔημιουργόςΒουλγαρακης Αποστολοςel
ΕκδότηςSpringer Natureen
ΠερίληψηUnderstanding and estimating regional climate change under different anthropogenic emission scenarios is pivotal for informing societal adaptation and mitigation measures. However, the high computational complexity of state-of-the-art climate models remains a central bottleneck in this endeavour. Here we introduce a machine learning approach, which utilises a unique dataset of existing climate model simulations to learn relationships between short-term and long-term temperature responses to different climate forcing scenarios. This approach not only has the potential to accelerate climate change projections by reducing the costs of scenario computations, but also helps uncover early indicators of modelled long-term climate responses, which is of relevance to climate change detection, predictability, and attribution. Our results highlight challenges and opportunities for data-driven climate modelling, especially concerning the incorporation of even larger model datasets in the future. We therefore encourage extensive data sharing among research institutes to build ever more powerful climate response emulators, and thus to enable faster climate change projections.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2021-04-20-
Ημερομηνία Δημοσίευσης2020-
Θεματική ΚατηγορίαAtmospheric scienceen
Θεματική ΚατηγορίαClimate changeen
Θεματική ΚατηγορίαClimate-change impactsen
Θεματική ΚατηγορίαClimate-change mitigationen
Θεματική ΚατηγορίαProjection and predictionen
Βιβλιογραφική ΑναφοράL. A. Mansfield, P. J. Nowack, M. Kasoar, R. G. Everitt, W. J. Collins and A. Voulgarakis, “Predicting global patterns of long-term climate change from short-term simulations using machine learning,” npj Clim. Atmos. Sci., vol. 3, no. 1, Nov. 2020. doi: 10.1038/s41612-020-00148-5en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά